Search Results

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Item

Enhanced electrochemical energy storage by nanoscopic decoration of endohedral and exohedral carbon with vanadium oxide via atomic layer deposition

2016, Fleischmann, Simon, Jäckel, Nicolas, Zeiger, Marco, Krüner, Benjamin, Grobelsek, Ingrid, Formanek, Petr, Choudhury, Soumyadip, Weingarth, Daniel, Presser, Volker

Atomic layer deposition (ALD) is a facile process to decorate carbon surfaces with redox-active nanolayers. This is a particularly attractive route to obtain hybrid electrode materials for high performance electrochemical energy storage applications. Using activated carbon and carbon onions as representatives of substrate materials with large internal or external surface area, respectively, we have studied the enhanced energy storage capacity of vanadium oxide coatings. While the internal porosity of activated carbon readily becomes blocked by obstructing nanopores, carbon onions enable the continued deposition of vanadia within their large interparticle voids. Electrochemical benchmarking in lithium perchlorate in acetonitrile (1 M LiClO4) showed a maximum capacity of 122 mAh/g when using vanadia coated activated carbon and 129 mAh/g for vanadia coated carbon onions. There is an optimum amount of vanadia between 50 and 65 wt % for both substrates that results in an ideal balance between redox-activity and electrical conductivity of the hybrid electrode. Assembling asymmetric (charge balanced) full-cells, a maximum specific energy of 38 Wh/kg and 29 Wh/kg was found for carbon onions and activated carbon, respectively. The stability of both systems is promising, with a capacity retention of ∼85–91% after 7000 cycles for full-cell measurements.

Loading...
Thumbnail Image
Item

Carbon onion–sulfur hybrid cathodes for lithium–sulfur batteries

2017, Choudhury, Soumyadip, Zeiger, Marco, Massuti-Ballester, Pau, Fleischmann, Simon, Formanek, Petr, Borchardt, Lars, Presser, Volker

In this study, we explore carbon onions (diameter below 10 nm), for the first time, as a substrate material for lithium sulfur cathodes. We introduce several scalable synthesis routes to fabricate carbon onion–sulfur hybrids by adopting in situ and melt diffusion strategies with sulfur fractions up to 68 mass%. The conducting skeleton of agglomerated carbon onions proved to be responsible for keeping active sulfur always in close vicinity to the conducting matrix. Therefore, the hybrids are found to be efficient cathodes for Li–S batteries, yielding 97–98% Coulombic efficiency over 150 cycles with a slow fading of the specific capacity (ca. 660 mA h g−1 after 150 cycles) in long term cycle test and rate capability experiments.