Search Results

Now showing 1 - 5 of 5
  • Item
    Ti-Al composite wires with high specific strength
    (Basel : MDPI AG, 2011) Marr, T.; Freudenberger, J.; Seifert, D.; Klauß, H.; Romberg, J.; Okulov, I.; Scharnweber, J.; Eschke, A.; Oertel, C.-G.; Skrotzki, W.; Kühn, U.; Eckert, J.; Schultz, L.
    An alternative deformation technique was applied to a composite made of titanium and an aluminium alloy in order to achieve severe plastic deformation. This involves accumulative swaging and bundling. Furthermore, it allows uniform deformation of a composite material while producing a wire which can be further used easily. Detailed analysis concerning the control of the deformation process, mesostructural and microstructural features and tensile testing was carried out on the as produced wires. A strong grain refinement to a grain size of 250–500 nm accompanied by a decrease in h111i fibre texture component and a change from low angle to high angle grain boundary characteristics is observed in the Al alloy. A strong increase in the mechanical properties in terms of ultimate tensile strength ranging from 600 to 930 MPa being equivalent to a specific strength of up to 223 MPa/g/cm3 was achieved.
  • Item
    Processing of intermetallic titanium aluminide wires
    (Basel : MDPI AG, 2013) Marr, T.; Freudenberger, J.; Kauffmann, A.; Romberg, J.; Okulov, I.; Petters, R.; Scharnweber, J.; Eschke, A.; Oertel, C.-G.; Kühn, U.; Eckert, J.; Skrotzki, W.; Schultz, L.
    This study shows the possibility of processing titanium aluminide wires by cold deformation and annealing. An accumulative swaging and bundling technique is used to co-deform Ti and Al. Subsequently, a two step heat treatment is applied to form the desired intermetallics, which strongly depends on the ratio of Ti and Al in the final composite and therefore on the geometry of the starting composite. In a first step, the whole amount of Al is transformed to TiAl3 by Al diffusion into Ti. This involves the formation of 12% porosity. In a second step, the complete microstructure is transformed into the equilibrium state of γ-TiAl and TiAl3. Using this approach, it is possible to obtain various kinds of gradient materials, since there is an intrinsic concentration gradient installed due to the swaging and bundling technique, but the processing of pure γ-TiAl wires is possible as well.
  • Item
    Twinning phenomena along and beyond the bain path
    (Basel : MDPI AG, 2013) Kauffmann-Weiss, S.; Kauffmann, A.; Niemann, R.; Freudenberger, J.; Schultz, L.; Fähler, S.
    Twinning is a phenomenon that occurs, e.g., during deformation, martensitic transformation and film growth. The present study shows that the crystallography of twinning can be described by two twinning modes along the complete Bain transformation path and beyond connecting body-centered and face-centered cubic structures. To probe this concept, we used strained epitaxial films of the Fe-Pd magnetic shape memory system. As the substrate acts as an absolute reference frame, we could show by pole figure measurements that all observed twinning can be a body-centered and face-centered cubic twinning mode. This continuously transforms towards identity when approaching the complementary structure.
  • Item
    Grain refinement and deformation mechanisms in room temperature severe plastic deformed Mg-AZ31
    (Basel : MDPI AG, 2013) Knauer, E.; Freudenberger, J.; Marr, T.; Kauffmann, A.; Schultz, L.
    A Ti-AZ31 composite was severely plastically deformed by rotary swaging at room temperature up to a logarithmic deformation strain of 2.98. A value far beyond the forming limit of pure AZ31 when being equivalently deformed. It is observed, that the microstructure evolution in Mg-AZ31 is strongly influenced by twinning. At low strains the [formula presented] twin systems lead to fragmentation of the initial grains. Inside the primary twins, grain refinement takes place by dynamic recrystallization, dynamic recovery and twinning. These mechanisms lead to a final grain size of ≈ 1 μm, while a strong centered ring fibre texture is evolved.
  • Item
    Entropy of conduction electrons from transport experiments
    (Basel : MDPI AG, 2020) Pérez, N.; Wolf, C.; Kunzmann, A.; Freudenberger, J.; Krautz, M.; Weise, B.; Nielsch, K.; Schierning, G.
    The entropy of conduction electrons was evaluated utilizing the thermodynamic definition of the Seebeck coefficient as a tool. This analysis was applied to two dierent kinds of scientific questions that can-if at all-be only partially addressed by other methods. These are the field-dependence of meta-magnetic phase transitions and the electronic structure in strongly disordered materials, such as alloys. We showed that the electronic entropy change in meta-magnetic transitions is not constant with the applied magnetic field, as is usually assumed. Furthermore, we traced the evolution of the electronic entropy with respect to the chemical composition of an alloy series. Insights about the strength and kind of interactions appearing in the exemplary materials can be identified in the experiments.