Search Results

Now showing 1 - 3 of 3
  • Item
    Hmox1 Upregulation Is a Mutual Marker in Human Tumor Cells Exposed to Physical Plasma-Derived Oxidants
    (Basel : MDPI, 2018-10-27) Bekeschus, Sander; Freund, Eric; Wende, Kristian; Gandhirajan, Rajesh; Schmidt, Anke
    Increasing numbers of cancer deaths worldwide demand for new treatment avenues. Cold physical plasma is a partially ionized gas expelling a variety of reactive oxygen and nitrogen species, which can be harnesses therapeutically. Plasmas and plasma-treated liquids have antitumor properties in vitro and in vivo. Yet, global response signatures to plasma treatment have not yet been identified. To this end, we screened eight human cancer cell lines to investigate effects of low-dose, tumor-static plasma-treated medium (PTM) on cellular activity, immune-modulatory properties, and transcriptional levels of 22 redox-related genes. With PTM, a moderate reduction of metabolic activity and modest modulation of chemokine/cytokine pattern and markers of immunogenic cell death was observed. Strikingly, the Nuclear factor (erythroid-derived 2)-like 2 (nrf2) target heme oxygenase 1 (hmox1) was upregulated in all cell lines 4 h post PTM-treatment. nrf2 was not changed, but its baseline expression inversely and significantly correlated with hmox1 expression after exposure to PTM. Besides awarding hmox1 a central role with plasma-derived oxidants, we present a transcriptional redox map of 22 targets and chemokine/cytokine secretion map of 13 targets across eight different human tumor cell lines of four tumor entities at baseline activity that are useful for future studies in this field.
  • Item
    Gas plasma-treated prostate cancer cells augment myeloid cell activity and cytotoxicity
    (Basel : MDPI, 2020) Bekeschus, Sander; Ressel, Verena; Freund, Eric; Gelbrich, Nadine; Mustea, Alexander; Stope, Matthias B.
    Despite recent improvements in cancer treatment, with many of them being related to foster antitumor immunity, tumor-related deaths continue to be high. Novel avenues are needed to complement existing therapeutic strategies in oncology. Medical gas plasma technology recently gained attention due to its antitumor activity. Gas plasmas act via the local deposition of a plethora of reactive oxygen species (ROS) that promote the oxidative cancer cell death. The immunological consequences of plasma-mediated tumor cell death are only poorly understood, however. To this end, we exposed two prostate cancer cell lines (LNCaP, PC3) to gas plasma in vitro, and investigated the immunomodulatory effects of the supernatants in as well as of direct co-culturing with two human myeloid cell lines (THP-1, HL-60). After identifying the cytotoxic action of the kINPen plasma jet, the supernatants of plasma-treated prostate cancer cells modulated myeloid cell-related mitochondrial ROS production and their metabolic activity, proliferation, surface marker expression, and cytokine release. Direct co-culture amplified differentiation-like surface marker expression in myeloid cells and promoted their antitumor-toxicity in the gas plasma over the untreated control conditions. The results suggest that gas plasma-derived ROS not only promote prostate cancer cell death but also augment myeloid cell activity and cytotoxicity. © 2020 by the authors. Licensee MDPI, Basel, Switzerland.
  • Item
    Antitumor Effects in Gas Plasma-Treated Patient-Derived Microtissues—An Adjuvant Therapy for Ulcerating Breast Cancer?
    (Basel : MDPI, 2021) Akbari, Zahra; Saadati, Fariba; Mahdikia, Hamed; Freund, Eric; Abbasvandi, Fereshteh; Shokri, Babak; Zali, Hakimeh; Bekeschus, Sander
    Despite global research and continuous improvement in therapy, cancer remains a challenging disease globally, substantiating the need for new treatment avenues. Medical gas plasma technology has emerged as a promising approach in oncology in the last years. Several investigations have provided evidence of an antitumor action in vitro and in vivo, including our recent work on plasma-mediated reduction of breast cancer in mice. However, studies of gas plasma exposure on patient-derived tumors with their distinct microenvironment (TME) are scarce. To this end, we here investigated patient-derived breast cancer tissue after gas plasma-treated ex vivo. The tissues were disjoint to pieces smaller than 100 µm, embedded in collagen, and incubated for several days. The viability of the breast cancer tissue clusters and their outgrowth into their gel microenvironment declined with plasma treatment. This was associated with caspase 3-dependent apoptotic cell death, paralleled by an increased expression of the anti-metastatic adhesion molecule epithelial (E)-cadherin. Multiplex chemokine/cytokine analysis revealed a marked decline in the release of the interleukins 6 and 8 (IL-6, IL-8) and monocyte-chemoattractant-protein 1 (MCP) known to promote a cancer-promoting milieu in the TME. In summary, we provide here, for the first time, evidence of a beneficial activity of gas plasma exposure on human patient-derived breast cancer tissue.