Search Results

Now showing 1 - 4 of 4
  • Item
    Corrigendum: The role of storage dynamics in annual wheat prices (2017 Environ. Res. Lett. 12 054005)
    (Bristol : IOP Publ., 2018) Schewe, Jacob; Otto, Christian; Frieler, Katja
    [no abstract available]
  • Item
    Evaluation of river flood extent simulated with multiple global hydrological models and climate forcings
    (Bristol : IOP Publ., 2021-8-13) Mester, Benedikt; Willner, Sven Norman; Frieler, Katja; Schewe, Jacob
    Global flood models (GFMs) are increasingly being used to estimate global-scale societal and economic risks of river flooding. Recent validation studies have highlighted substantial differences in performance between GFMs and between validation sites. However, it has not been systematically quantified to what extent the choice of the underlying climate forcing and global hydrological model (GHM) influence flood model performance. Here, we investigate this sensitivity by comparing simulated flood extent to satellite imagery of past flood events, for an ensemble of three climate reanalyses and 11 GHMs. We study eight historical flood events spread over four continents and various climate zones. For most regions, the simulated inundation extent is relatively insensitive to the choice of GHM. For some events, however, individual GHMs lead to much lower agreement with observations than the others, mostly resulting from an overestimation of inundated areas. Two of the climate forcings show very similar results, while with the third, differences between GHMs become more pronounced. We further show that when flood protection standards are accounted for, many models underestimate flood extent, pointing to deficiencies in their flood frequency distribution. Our study guides future applications of these models, and highlights regions and models where targeted improvements might yield the largest performance gains.
  • Item
    The effects of climate extremes on global agricultural yields
    (Bristol : IOP Publ., 2019) Vogel, Elisabeth; Donat, Markus G.; Alexander, Lisa V.; Meinshausen, Malte; Ray, Deepak K.; Karoly, David; Meinshausen, Nicolai; Frieler, Katja
    Climate extremes, such as droughts or heat waves, can lead to harvest failures and threaten the livelihoods of agricultural producers and the food security of communities worldwide. Improving our understanding of their impacts on crop yields is crucial to enhance the resilience of the global food system. This study analyses, to our knowledge for the first time, the impacts of climate extremes on yield anomalies of maize, soybeans, rice and spring wheat at the global scale using sub-national yield data and applying a machine-learning algorithm. We find that growing season climate factors—including mean climate as well as climate extremes—explain 20%–49% of the variance of yield anomalies (the range describes the differences between crop types), with 18%–43% of the explained variance attributable to climate extremes, depending on crop type. Temperature-related extremes show a stronger association with yield anomalies than precipitation-related factors, while irrigation partly mitigates negative effects of high temperature extremes. We developed a composite indicator to identify hotspot regions that are critical for global production and particularly susceptible to the effects of climate extremes. These regions include North America for maize, spring wheat and soy production, Asia in the case of maize and rice production as well as Europe for spring wheat production. Our study highlights the importance of considering climate extremes for agricultural predictions and adaptation planning and provides an overview of critical regions that are most susceptible to variations in growing season climate and climate extremes.
  • Item
    Evaluating changes of biomass in global vegetation models: the role of turnover fluctuations and ENSO events
    (Bristol : IOP Publ., 2018) García Cantú, Anselmo; Frieler, Katja; Reyer, Christopher P O; Ciais, Philippe; Chang, Jinfeng; Ito, Akihiko; Nishina, Kazuya; François, Louis; Henrot, Alexandra-Jane; Hickler, Thomas; Steinkamp, Jörg; Rafique, Rashid; Zhao, Fang; Ostberg, Sebastian; Schaphoff, Sibyll; Tian, Hanqin; Pan, Shufen; Yang, Jia; Morfopoulos, Catherine; Betts, Richard
    This paper evaluates the ability of eight global vegetation models to reproduce recent trends and inter-annual variability of biomass in natural terrestrial ecosystems. For the purpose of this evaluation, the simulated trajectories of biomass are expressed in terms of the relative rate of change in biomass (RRB), defined as the deviation of the actual rate of biomass turnover from its equilibrium counterpart. Cumulative changes in RRB explain long-term changes in biomass pools. RRB simulated by the global vegetation models is compared with its observational equivalent, derived from vegetation optical depth reconstructions of above-ground biomass (AGB) over the period 1993–2010. According to the RRB analysis, the rate of global biomass growth described by the ensemble of simulations substantially exceeds the observation. The observed fluctuations of global RRB are significantly correlated with El Niño Southern Oscillation events (ENSO), but only some of the simulations reproduce this correlation. However, the ENSO sensitivity of RRB in the tropics is not significant in the observation, while it is in some of the simulations. This mismatch points to an important limitation of the observed AGB reconstruction to capture biomass variations in tropical forests. Important discrepancies in RRB were also identified at the regional scale, in the tropical forests of Amazonia and Central Africa, as well as in the boreal forests of north-western America, western and central Siberia. In each of these regions, the RRBs derived from the simulations were analyzed in connection with underlying differences in net primary productivity and biomass turnover rate ̶as a basis for exploring in how far differences in simulated changes in biomass are attributed to the response of the carbon uptake to CO2 increments, as well as to the model representation of factors affecting the rates of mortality and turnover of foliage and roots. Overall, our findings stress the usefulness of using RRB to evaluate complex vegetation models and highlight the importance of conducting further evaluations of both the actual rate of biomass turnover and its equilibrium counterpart, with special focus on their background values and sources of variation. In turn, this task would require the availability of more accurate multi-year observational data of biomass and net primary productivity for natural ecosystems, as well as detailed and updated information on land-cover classification.