Search Results

Now showing 1 - 10 of 13
  • Item
    Activity and electron donor preference of two denitrifying bacterial strains identified by Raman gas spectroscopy
    (Berlin [u.a.] : Springer, 2022) Blohm, Annika; Kumar, Swatantar; Knebl, Andreas; Herrmann, Martina; Küsel, Kirsten; Popp, Jürgen; Frosch, Torsten
    Human activities have greatly increased the input of reactive nitrogen species into the environment and disturbed the balance of the global N cycle. This imbalance may be offset by bacterial denitrification, an important process in maintaining the ecological balance of nitrogen. However, our understanding of the activity of mixotrophic denitrifying bacteria is not complete, as most research has focused on heterotrophic denitrification. The aim of this study was to investigate substrate preferences for two mixotrophic denitrifying bacterial strains, Acidovorax delafieldii and Hydrogenophaga taeniospiralis, under heterotrophic, autotrophic or mixotrophic conditions. This complex analysis was achieved by simultaneous identification and quantification of H2, O2, CO2, 14N2, 15N2 and 15N2O in course of the denitrification process with help of cavity-enhanced Raman spectroscopic (CERS) multi-gas analysis. To disentangle electron donor preferences for both bacterial strains, microcosm-based incubation experiments under varying substrate conditions were conducted. We found that Acidovorax delafieldii preferentially performed heterotrophic denitrification in the mixotrophic sub-experiments, while Hydrogenophaga taeniospiralis preferred autotrophic denitrification in the mixotrophic incubation. These observations were supported by stoichiometric calculations. The results demonstrate the prowess of advanced Raman multi-gas analysis to study substrate use and electron donor preferences in denitrification, based on the comprehensive quantification of complex microbial gas exchange processes. © 2021, The Author(s).
  • Item
    Direct raman spectroscopic measurements of biological nitrogen fixation under natural conditions: An analytical approach for studying nitrogenase activity
    (Columbus, Ohio : American Chemical Society, 2016) Jochum, Tobias; Fastnacht, Agnes; Trumbore, Susan E.; Popp, Jürgen; Frosch, Torsten
    Biological N2 fixation is a major input of bioavailable nitrogen, which represents the most frequent factor limiting the agricultural production throughout the world. Especially, the symbiotic association between legumes and Rhizobium bacteria can provide substantial amounts of nitrogen (N) and reduce the need for industrial fertilizers. Despite its importance in the global N cycle, rates of biological nitrogen fixation have proven difficult to quantify. In this work, we propose and demonstrate a simple analytical approach to measure biological N2 fixation rates directly without a proxy or isotopic labeling. We determined a mean N2 fixation rate of 78 ± 5 μmol N2 (g dry weight nodule)-1 h-1 of a Medicago sativa-Rhizobium consortium by continuously analyzing the amount of atmospheric N2 in static environmental chambers with Raman gas spectroscopy. By simultaneously analyzing the CO2 uptake and photosynthetic plant activity, we think that a minimum CO2 mixing ratio might be needed for natural N2 fixation and only used the time interval above this minimum CO2 mixing ratio for N2 fixation rate calculations. The proposed approach relies only on noninvasive measurements of the gas phase and, given its simplicity, indicates the potential to estimate biological nitrogen fixation of legume symbioses not only in laboratory experiments. The same methods can presumably also be used to detect N2 fluxes by denitrification from ecosystems to the atmosphere. (Figure Presented).
  • Item
    Rapid Raman spectroscopic analysis of stress induced degradation of the pharmaceutical drug tetracycline
    (Basel : MDPI, 2020) Domes, Christian; Frosch, Timea; Popp, Juergen; Frosch, Torsten
    Stress factors caused by inadequate storage can induce the unwanted degradation of active compounds in pharmaceutical formulations. Resonance Raman spectroscopy is presented as an analytical tool for rapid monitoring of small concentration changes of tetracycline and the metabolite 4-epianhydrotetracycline. These degradation processes were experimentally induced by changes in temperature, humidity, and irradiation with visible light over a time period of up to 23 days. The excitation wavelength ?exc = 413 nm was proven to provide short acquisition times for the simultaneous Raman spectroscopic detection of the degradation of tetracycline and production of its impurity in small sample volumes. Small concentration changes could be detected (down to 1.4% for tetracycline and 0.3% for 4-epianhydrotetracycline), which shows the potential of resonance Raman spectroscopy for analyzing the decomposition of pharmaceutical products. © 2020 by the authors.
  • Item
    Counterfeit and substandard test of the antimalarial tablet Riamet® by means of Raman hyperspectral multicomponent analysis
    (Basel : MDPI, 2019) Frosch, Timea; Wyrwich, Elisabeth; Yan, Di; Domes, Christian; Domes, Robert; Popp, Jürgen; Frosch, Torsten
    The fight against counterfeit pharmaceuticals is a global issue of utmost importance, as failed medication results in millions of deaths every year. Particularly affected are antimalarial tablets. A very important issue is the identification of substandard tablets that do not contain the nominal amounts of the active pharmaceutical ingredient (API), and the differentiation between genuine products and products without any active ingredient or with a false active ingredient. This work presents a novel approach based on fiber-array based Raman hyperspectral imaging to qualify and quantify the antimalarial APIs lumefantrine and artemether directly and non-invasively in a tablet in a time-efficient way. The investigations were carried out with the antimalarial tablet Riamet® and self-made model tablets, which were used as examples of counterfeits and substandard. Partial least-squares regression modeling and density functional theory calculations were carried out for quantification of lumefantrine and artemether and for spectral band assignment. The most prominent differentiating vibrational signatures of the APIs were presented.
  • Item
    Fiber-array-based Raman hyperspectral imaging for simultaneous chemical selective monitoring of particle size and shape of active ingredients in analgesic tablets
    (Basel : MDPI, 2019) Frosch, Timea; Wyrwich, Elisabeth; Yan, Di; Popp, Jürgen; Frosch, Torsten
    The particle shape, size and distribution of active pharmaceutical ingredients (API) are relevant quality indicators of pharmaceutical tablets due to their high impact on the manufacturing process. Furthermore, the bioavailability of the APIs from the dosage form depends largely on these characteristics. Routinely, particle size and shape are only analyzed in the powder form, without regard to the effect of the formulation procedure on the particle characteristics. The monitoring of these parameters improves the understanding of the process; therefore, higher quality and better control over the biopharmaceutical profile can be ensured. A new fiber-array-based Raman hyperspectral imaging technique is presented for direct simultaneous in-situ monitoring of three different active pharmaceutical ingredients- acetylsalicylic acid, acetaminophen and caffeine- in analgesic tablets. This novel method enables a chemically selective, noninvasive assessment of the distribution of the active ingredients down to 1 µm spatial resolution. The occurrence of spherical and needle-like particles, as well as agglomerations and the respective particle size ranges, were rapidly determined for two commercially available analgesic tablet types. Subtle differences were observed in comparison between these two tablets. Higher amounts of acetaminophen were visible, more needle-shaped and bigger acetylsalicylic acid particles, and a higher incidence of bigger agglomerations were found in one of the analgesic tablets.
  • Item
    Liquid-Core Microstructured Polymer Optical Fiber as Fiber-Enhanced Raman Spectroscopy Probe for Glucose Sensing
    (Washington, DC : OSA, 2020) Azkune, Mikel; Frosch, Timea; Arrospide, Eneko; Aldabaldetreku, Gotzon; Bikandi, Iñaki; Zubia, Joseba; Popp, Jürgen; Frosch, Torsten
    This work reports the development and application of two liquid-core microstructured polymer optical fibers (LC-mPOF) with different microstructure sizes. They are used in a fiber-enhanced Raman spectroscopy sensing platform, with the aim of detecting glucose in aqueous solutions in the clinically relevant range for sodium-glucose cotransporter 2 inhibitor therapy. The sensing platform is tested for low-concentration glucose solutions using each LC-mPOF. Results confirm that a significant enhancement of the Raman signal is achieved in comparison to conventional Raman spectroscopy. Additional measurements are carried out to obtain the valid measurement range, the resolution, and the limit of detection, showing that the LC-mPOF with 66-µm-diameter central hollow core has the highest potential for future clinical applications. Finally, preliminary tests successfully demonstrate glucose identification in urine. © 1983-2012 IEEE.
  • Item
    Grasshopper herbivory immediately affects element cycling but not export rates in an N‐limited grassland system
    (Ithaca, NY : ESA, 2021) Potthast, Karin; Meyer, Stefanie; Tischer, Alexander; Gleixner, Gerd; Sieburg, Anne; Frosch, Torsten; Michalzik, Beate
    As a cause of ecosystem disturbances, phytophagous insects are known to directly influence the element and organic matter (OM) cycling in ecosystems by their defoliation and excretion activity. This study focuses on the interplay between short-term, insect herbivory, plant responses to feeding activity, rhizosphere processes, and belowground nutrient availability under nutrient-poor soil conditions. To test the effects of insect herbivory on OM and nutrient cycling in an N-limited pasture system, mesocosm laboratory experiments were conducted using Dactylis glomerata as common grass species and Chorthippus dorsatus, a widespread grasshopper species, to induce strong defoliating herbivory. 13CO2 pulse labeling was used together with labeled 15N feces to trace the fate of C in soil respiration at the beginning of herbivory, and of C and N in above- and belowground plant biomass, grasshopper, feces, bulk soil, soil microbial biomass, throughfall solutions, and soil solutions. Within five days, herbivory caused a reduction in aboveground grass biomass by about 34%. A linear mixed-effects model revealed that herbivory significantly increased total dissolved C and N amounts in throughfall solutions by a factor of 4–10 (P < 0.05) compared with the control. In total, 27.6% of the initially applied feces 15N were translocated from the aboveground to the belowground system. A significant enrichment of 15N in roots led to the assumption that feces-derived 15N was rapidly taken up to compensate for the frass-related foliar N losses in light of N shortage. Soil microorganisms incorporated newly available 13C; however, the total amount of soil microbial biomass remained unaffected, while the exploitative grass species rapidly sequestered resources to facilitate its regrowth after herbivory attack. Heavy herbivory by insects infesting D. glomerata-dominated, N-deficient grasslands remarkably impacted belowground nutrient cycling by an instant amplification of available nutrients, which led to an intensified nutrient competition between plants and soil microorganisms. Consequently, these competitive plant–soil microbe interactions accelerated N cycling and effectively retained herbivory-mediated C and N surplus release resulting in diminished N losses from the system. The study highlighted the overarching role of plant adaptations to in situ soil fertility in short-term ecosystem disturbances.
  • Item
    Recent advances in nano-photonic techniques for pharmaceutical drug monitoring with emphasis on Raman spectroscopy
    (Berlin : de Gruyter, 2019) Frosch, Timea; Knebl, Andreas; Frosch, Torsten
    Innovations in Raman spectroscopic techniques provide a potential solution to current problems in pharmaceutical drug monitoring. This review aims to summarize the recent advances in the field. The developments of novel plasmonic nanoparticles continuously push the limits of Raman spectroscopic detection. In surface-enhanced Raman spectroscopy (SERS), these particles are used for the strong local enhancement of Raman signals from pharmaceutical drugs. SERS is increasingly applied for forensic trace detection and for therapeutic drug monitoring. In combination with spatially offset Raman spectroscopy, further application fields could be addressed, e.g. in situ pharmaceutical quality testing through the packaging. Raman optical activity, which enables the thorough analysis of specific chiral properties of drugs, can also be combined with SERS for signal enhancement. Besides SERS, micro- and nano-structured optical hollow fibers enable a versatile approach for Raman signal enhancement of pharmaceuticals. Within the fiber, the volume of interaction between drug molecules and laser light is increased compared with conventional methods. Advances in fiber-enhanced Raman spectroscopy point at the high potential for continuous online drug monitoring in clinical therapeutic diagnosis. Furthermore, fiber-array based non-invasive Raman spectroscopic chemical imaging of tablets might find application in the detection of substandard and counterfeit drugs. The discussed techniques are promising and might soon find widespread application for the detection and monitoring of drugs in various fields.
  • Item
    Highly Sensitive Detection of the Antibiotic Ciprofloxacin by Means of Fiber Enhanced Raman Spectroscopy
    (Basel : MDPI, 2019) Wolf, Sebastian; Frosch, Timea; Popp, Juergen; Pletz, Mathias W.; Frosch, Torsten
    Sepsis and septic shock exhibit a rapid course and a high fatality rate. Antibiotic treatment is time-critical and precise knowledge of the antibiotic concentration during the patients’ treatment would allow individual dose adaption. Over- and underdosing will increase the antimicrobial efficacy and reduce toxicity. We demonstrated that fiber enhanced Raman spectroscopy (FERS) can be used to detect very low concentrations of ciprofloxacin in clinically relevant doses, down to 1.5 µM. Fiber enhancement was achieved in bandgap shifted photonic crystal fibers. The high linearity between the Raman signals and the drug concentrations allows a robust calibration for drug quantification. The needed sample volume was very low (0.58 µL) and an acquisition time of 30 s allowed the rapid monitoring of ciprofloxacin levels in a less invasive way than conventional techniques. These results demonstrate that FERS has a high potential for clinical in-situ monitoring of ciprofloxacin levels.
  • Item
    Fiber enhanced Raman spectroscopic analysis as a novel method for diagnosis and monitoring of diseases related to hyperbilirubinemia and hyperbiliverdinemia
    (Cambridge : Soc., 2016) Yan, Di; Domes, Christian; Domes, Robert; Frosch, Timea; Popp, Jürgen; Pletz, Mathias W.; Frosch, Torsten
    Fiber enhanced resonance Raman spectroscopy (FERS) is introduced for chemically selective and ultrasensitive analysis of the biomolecules hematin, hemoglobin, biliverdin, and bilirubin. The abilities for analyzing whole intact, oxygenated erythrocytes are proven, demonstrating the potential for the diagnosis of red blood cell related diseases, such as different types of anemia and hemolytic disorders. The optical fiber enables an efficient light-guiding within a miniaturized sample volume of only a few micro-liters and provides a tremendously improved analytical sensitivity (LODs of 0.5 μM for bilirubin and 0.13 μM for biliverdin with proposed improvements down to the pico-molar range). FERS is a less invasive method than the standard ones and could be a new analytical method for monitoring neonatal jaundice, allowing a precise control of the unconjugated serum bilirubin levels, and therefore, providing a better prognosis for newborns. The potential for sensing very low concentrations of the bile pigments may also open up new opportunities for cancer research. The abilities of FERS as a diagnostic tool are explored for the elucidation of jaundice with different etiologies including the rare, not yet well understood diseases manifested in green jaundice. This is demonstrated by quantifying clinically relevant concentrations of bilirubin and biliverdin simultaneously in the micro-molar range: for the case of hyperbilirubinemia due to malignancy, infectious hepatitis, cirrhosis or stenosis of the common bile duct (1 μM biliverdin together with 50 μM bilirubin) and for hyperbiliverdinemia (25 μM biliverdin and 75 μM bilirubin). FERS has high potential as an ultrasensitive analytical technique for a wide range of biomolecules and in various life-science applications.