Search Results

Now showing 1 - 8 of 8
  • Item
    Quantitative imaging of water, ice and air in permafrost systems through petrophysical joint inversion of seismic refraction and electrical resistivity data
    (Oxford : Oxford Univ. Press, 2019) Wagner, F.M.; Mollaret, C.; Günther, T.; Kemna, A.; Hauck, C.
    Quantitative estimation of pore fractions filled with liquid water, ice and air is crucial for a process-based understanding of permafrost and its hazard potential upon climate-induced degradation. Geophysical methods offer opportunities to image distributions of permafrost constituents in a non-invasive manner. We present a method to jointly estimate the volumetric fractions of liquid water, ice, air and the rock matrix from seismic refraction and electrical resistivity data. Existing approaches rely on conventional inversions of both data sets and a suitable a priori estimate of the porosity distribution to transform velocity and resistivity models into estimates for the four-phase system, often leading to non-physical results. Based on two synthetic experiments and a field data set from an Alpine permafrost site (Schilthorn, Bernese Alps and Switzerland), it is demonstrated that the developed petrophysical joint inversion provides physically plausible solutions, even in the absence of prior porosity estimates. An assessment of the model covariance matrix for the coupled inverse problem reveals remaining petrophysical ambiguities, in particular between ice and rock matrix. Incorporation of petrophysical a priori information is demonstrated by penalizing ice occurrence within the first two meters of the subsurface where the measured borehole temperatures are positive. Joint inversion of the field data set reveals a shallow air-rich layer with high porosity on top of a lower-porosity subsurface with laterally varying ice and liquid water contents. Non-physical values (e.g. negative saturations) do not occur and estimated ice saturations of 0–50 per cent as well as liquid water saturations of 15–75 per cent are in agreement with the relatively warm borehole temperatures between −0.5  and 3 ° C. The presented method helps to improve quantification of water, ice and air from geophysical observations.
  • Item
    Monitoring hillslope moisture dynamics with surface ERT for enhancing spatial significance of hydrometric point measurements
    (Munich : EGU, 2015) Hübner, R.; Heller, K.; Günther, T.; Kleber, A.
    Besides floodplains, hillslopes are basic units that mainly control water movement and flow pathways within catchments of subdued mountain ranges. The structure of their shallow subsurface affects water balance, e.g. infiltration, retention, and runoff. Nevertheless, there is still a gap in the knowledge of the hydrological dynamics on hillslopes, notably due to the lack of generalization and transferability. This study presents a robust multi-method framework of electrical resistivity tomography (ERT) in addition to hydrometric point measurements, transferring hydrometric data into higher spatial scales to obtain additional patterns of distribution and dynamics of soil moisture on a hillslope. A geoelectrical monitoring in a small catchment in the eastern Ore Mountains was carried out at weekly intervals from May to December 2008 to image seasonal moisture dynamics on the hillslope scale. To link water content and electrical resistivity, the parameters of Archie's law were determined using different core samples. To optimize inversion parameters and methods, the derived spatial and temporal water content distribution was compared to tensiometer data. The results from ERT measurements show a strong correlation with the hydrometric data. The response is congruent to the soil tension data. Water content calculated from the ERT profile shows similar variations as that of water content from soil moisture sensors. Consequently, soil moisture dynamics on the hillslope scale may be determined not only by expensive invasive punctual hydrometric measurements, but also by minimally invasive time-lapse ERT, provided that pedo-/petrophysical relationships are known. Since ERT integrates larger spatial scales, a combination with hydrometric point measurements improves the understanding of the ongoing hydrological processes and better suits identification of heterogeneities.
  • Item
    Spectral induced polarization measurements for predicting the hydraulic conductivity in sandy aquifers
    (Munich : EGU, 2013) Attwa, M.; Günther, T.
    Field and laboratory spectral induced polarization (SIP) measurements are integrated to characterize the hydrogeological conditions at the Schillerslage test site in Germany. The phase images are capable of monitoring thin peat layers within the sandy aquifers. However, the field results show limitations of decreasing resolution with depth. In comparison with the field inversion results, the SIP laboratory measurements show a certain shift in SIP response due to different compaction and sorting of the samples. The SIP data are analyzed to derive an empirical relationship for predicting the hydraulic conductivity (K). In particular, two significant but weak correlations between individual real resistivities (ρ') and relaxation times (τ), based on a Debye decomposition (DD) model, with measured K are found for the upper groundwater aquifer. The maximum relaxation time (τmax) and logarithmically weighted average relaxation time (τlw) show a better relation with K values than the median value τ50. A combined power law relation between individual ρ' and τ with K is developed with an expression of A · (ρ')B · (τlw)C, where A, B and C are determined using a least-squares fit between the measured and predicted K. The suggested approach with the calculated coefficients of the first aquifer is applied for the second. Results show good correlation with the measured K indicating that the derived relationship is superior to single phase angle models as Börner or Slater models.
  • Item
    Ground-penetrating radar insight into a coastal aquifer: the freshwater lens of Borkum Island
    (Munich : EGU, 2013) Igel, J.; Günther, T.; Kuntzer, M.
    Freshwater lenses, as important resource for drinking water, are sensitive to climate changes and sea level rise. To simulate this impact on the groundwater systems, hydraulic subsurface models have to be designed. Geophysical techniques can provide information for generating realistic models. The aim of our work is to show how ground-penetrating radar (GPR) investigations can contribute to such hydrological simulations. In the pilot area, Borkum island, GPR was used to map the shape of the groundwater table (GWT) and to characterise the aquifer. In total, 20 km of constant offset (CO) profiles were measured with centre frequencies of 80 and 200 MHz. Wave velocities were determined by common midpoint (CMP) measurements and vertical radar profiling (VRP) in a monitoring well. The 80 MHz CO data show a clear reflection at the groundwater table, whereas the reflection is weaker for the 200 MHz data. After correcting the GPR water tables for the capillary rise, they are in good accordance with the pressure heads of the observation wells in the area. In the centre of the island, the groundwater table is found up to 3.5 m above sea level, however it is lower towards the coastline and marshland. Some local depressions are observed in the region of dune valleys and around pumping stations of the local water supplier. GPR also reveals details within the sediments and highly-permeable aeolian sands can be distinguished from less-permeable marine sediments. Further, a silt loam layer below the water table could be mapped on a large area. The reflection characteristics indicates scattered erosion channels in this layer that cause it to be an aquitard with some leakage. GPR provides a high resolution map of the groundwater table and insight into the stratigraphy of the sediments and their hydraulic properties. This is valuable complementary information to the observation of sparsely distributed monitoring wells as input to hydraulic simulation.
  • Item
    Three-dimensional monitoring of soil water content in a maize field using Electrical Resistivity Tomography
    (Munich : EGU, 2013) Beff, L.; Günther, T.; Vandoorne, B.; Couvreur, V.; Javaux, M.
    A good understanding of the soil water content (SWC) distribution at the field scale is essential to improve the management of water, soil and crops. Recent studies proved that Electrical Resistivity Tomography (ERT) opens interesting perspectives in the determination of the SWC distribution in 3 dimensions (3-D). This study was conducted (i) to check and validate how ERT is able to monitor SWC distribution in a maize field during the late growing season; and (ii) to investigate how maize plants and rainfall affect the dynamics of SWC distribution. Time Domain Reflectometry (TDR) measurements were used to validate ERT-inverted SWC values. Evolution of water mass balance was also calculated to check whether ERT was capable of giving a reliable estimate of soil water stock evolution. It is observed that ERT was able to give the same average SWC as TDR (R2 = 0.98). In addition, ERT gives better estimates of the water stock than TDR thanks to its higher spatial resolution. The high resolution of ERT measurements also allows for the discrimination of SWC heterogeneities. The SWC distribution showed that alternation of maize rows and inter-rows was the main influencing factor of the SWC distribution. The drying patterns were linked to the root profiles, with drier zones under the maize rows. During short periods, with negligible rainfall, the SWC decrease took place mainly in the two upper soil horizons and in the inter-row area. In contrast, rainfall increased the SWC mostly under the maize rows and in the upper soil layer. Nevertheless, the total amount of rainfall during the growing season was not sufficient to modify the SWC patterns induced by the maize rows. During the experimental time, there was hardly any SWC redistribution from maize rows to inter-rows. Yet, lateral redistribution from inter-rows to maize rows induced by potential gradient generates SWC decrease in the inter-row area and in the deeper soil horizons.
  • Item
    Hydraulic properties at the North Sea island of Borkum derived from joint inversion of magnetic resonance and electrical resistivity soundings
    (Munich : EGU, 2012) Günther, T.; Müller-Petke, M.
    For reliably predicting the impact of climate changes on salt/freshwater systems below barrier islands, a long-term hydraulic modelling is inevitable. As input we need the parameters porosity, salinity and hydraulic conductivity at the catchment scale, preferably non-invasively acquired with geophysical methods. We present a methodology to retrieve the searched parameters and a lithological interpretation by the joint analysis of magnetic resonance soundings (MRS) and vertical electric soundings (VES). Both data sets are jointly inverted for resistivity, water content and decay time using a joint inversion scheme. Coupling is accomplished by common layer thicknesses. We show the results of three soundings measured on the eastern part of the North Sea island of Borkum. Pumping test data is used to calibrate the petrophysical relationship for the local conditions in order to estimate permeability from nuclear magnetic resonance (NMR) data. Salinity is retrieved from water content and resistivity using a modified Archie equation calibrated by local samples. As a result we are able to predict porosity, salinity and hydraulic conductivities of the aquifers, including their uncertainties. The joint inversion significantly improves the reliability of the results. Verification is given by comparison with a borehole. A sounding in the flooding area demonstrates that only the combined inversion provides a correct subsurface model. Thanks to the joint application, we are able to distinguish fluid conductivity from lithology and provide reliable hydraulic parameters as shown by uncertainty analysis. These findings can finally be used to build groundwater flow models for simulating climate changes. This includes the improved geometry and lithological attribution, and also the parameters and their uncertainties. © Author(s) 2012.
  • Item
    Numerical modelling of climate change impacts on freshwater lenses on the North Sea Island of Borkum using hydrological and geophysical methods
    (Munich : EGU, 2012) Sulzbacher, H.; Wiederhold, H.; Siemon, B.; Grinat, M.; Igel, J.; Burschil, T.; Günther, T.; Hinsby, K.
    A numerical, density dependent groundwater model is set up for the North Sea Island of Borkum to estimate climate change impacts on coastal aquifers and especially the situation of barrier islands in the Wadden Sea. The database includes information from boreholes, a seismic survey, a helicopter-borne electromagnetic (HEM) survey, monitoring of the freshwater-saltwater boundary by vertical electrode chains in two boreholes, measurements of groundwater table, pumping and slug tests, as well as water samples. Based on a statistical analysis of borehole columns, seismic sections and HEM, a hydrogeological model is set up. The groundwater model is developed using the finite-element programme FEFLOW. The density dependent groundwater model is calibrated on the basis of hydraulic, hydrological and geophysical data, in particular spatial HEM and local monitoring data. Verification runs with the calibrated model show good agreement between measured and computed hydraulic heads. A good agreement is also obtained between measured and computed density or total dissolved solids data for both the entire freshwater lens on a large scale and in the area of the well fields on a small scale. For simulating future changes in this coastal groundwater system until the end of the current century, we use the climate scenario A2, specified by the Intergovernmental Panel on Climate Change and, in particular, the data for the German North Sea coast. Simulation runs show proceeding salinisation with time beneath the well fields of the two waterworks Waterdelle and Ostland. The modelling study shows that the spreading of well fields is an appropriate protection measure against excessive salinisation of the water supply until the end of the current century.
  • Item
    Evaluating Experimental Design of ERT for Soil Moisture Monitoring in Contour Hedgerow Intercropping Systems
    (Hoboken, NJ : Wiley, 2012) Garré, S.; Günther, T.; Diels, J.; Vanderborght, J.
    Contour hedgerow intercropping systems have been proposed as an alternative to traditional agricultural practice with a single crop, as they are effective in reducing run-off and soil erosion. However, competition for water and nutrients between crops and associated hedgerows may reduce the overall performance of these systems. To get a more detailed understanding of the competition for water, spatially resolved monitoring of soil water contents in the soil-plant-atmosphere system is necessary. Electrical resistivity tomography (ERT) is potentially a valuable technique to monitor changes in soil moisture in space and time. In this study, the performance of different ERT electrode arrays to detect the soil moisture dynamics in a mono- and an intercropping system was tested. Their performance was analyzed based on a synthetic study using geophysical measures, such as data recovery and resolution, and using spatial statistics of retrieved water content, such as an adjusted coefficient of variation and semivariances. The synthetic ERT measurements detected differences between the cropping systems and retrieved spatial structure of the soil moisture distribution, but the variance and semivariance were underestimated. Sharp water content contrasts between horizons or in the neighborhood of a root water uptake bulb were smoothened. The addition of electrodes deeper in the soil improved the performance, but sometimes only marginally. ERT is therefore a valuable tool for soil moisture monitoring in the field under different cropping systems if an electrode array is used which can resolve the patterns expected to be present in the medium. The use of spatial statistics allowed to not only identify the overall model recovery, but also to quantify the recovery of spatial structures.