Search Results

Now showing 1 - 10 of 15
  • Item
    Geophysical investigation of a freshwater lens on the island of Langeoog, Germany – Insights from combined HEM, TEM and MRS data
    (Amsterdam [u.a.] : Elsevier Science, 2017) Costabel, Stephan; Siemon, Bernhard; Houben, Georg; Günther, Thomas
    A multi-method geophysical survey, including helicopter-borne electromagnetics (HEM), transient electromagnetics (TEM), and magnetic resonance sounding (MRS), was conducted to investigate a freshwater lens on the North Sea island of Langeoog, Germany. The HEM survey covers the entire island and gives an overview of the extent of three freshwater lenses that reach depths of up to 45 m. Ground-based TEM and MRS were conducted particularly on the managed western lens to verify the HEM results and to complement the lithological information from existing boreholes. The results of HEM and TEM are in good agreement. Salt- and freshwater-bearing sediments can, as expected, clearly be distinguished due to their individual resistivity ranges. In the resistivity data, a large transition zone between fresh- and saltwater with a thickness of up to 20 m is identified, the existence of which is verified by borehole logging and sampling. Regarding lithological characterisation of the subsurface, the MRS method provides more accurate and reliable results than HEM and TEM. Using a lithological index derived from MRS water content and relaxation time, thin aquitard structures as well as fine and coarse sand aquifers can be distinguished. Complementing the existing borehole data with the lithology information estimated from MRS, we generate a map showing the occurrence of aquitard structures, which significantly improves the hydrogeological model of the island. Moreover, we demonstrate that the estimates of groundwater conductivity in the sand aquifers from geophysical data are in agreement with the fluid conductivity measured in the boreholes.
  • Item
    Structurally coupled cooperative inversion of magnetic resonance with resistivity soundings
    (Tulsa, Okla. : SEG, 2018) Skibbe, Nico; Günther, Thomas; Müller-Petke, Mike
    Hydrologic parameters, such as porosity, salinity, and hydraulic conductivity are keys for understanding the subsurface. Hydrogeophysical investigations can lead to ambiguous results, particularly in the presence of clay and saltwater. A combination of magnetic resonance sounding and vertical electrical sounding is known to provide insight into these properties. Structural coupling increases the model resolution and reduces the ambiguity for both methods. Inversion schemes using block models exist, but they have trouble resolving smooth or complex parameter distributions. We have developed a structurally coupled cooperative inversion (SCCI) that works with smooth parameter distributions and is able to introduce blocky features through the exchange of structural information. The coupling adapts the smoothness constraint locally in connection to the model roughness to allow for sharper model boundaries. We investigate the performance of the SCCI using blocky and smooth synthetic models that depend on two controlling coupling parameters. A well-known field case is used to verify the results with drilling core and well logs. Varying the coupling parameters results in equivalent models covering the bandwidth from smooth to blocky, while providing a similar data fit. The SCCI results are more consistent with the synthetic models. Structural coupling improves the resolution of the single methods and can be used to describe hydrogeophysical targets in more detail and less ambiguously.
  • Item
    Electric resistivity and seismic refraction tomography: a challenging joint underwater survey at Äspö Hard Rock Laboratory
    (Göttingen : Copernicus Publ., 2017) Ronczka, Mathias; Hellman, Kristofer; Günther, Thomas; Wisén, Roger; Dahlin, Torleif
    Tunnelling below water passages is a challenging task in terms of planning, pre-investigation and construction. Fracture zones in the underlying bedrock lead to low rock quality and thus reduced stability. For natural reasons, they tend to be more frequent at water passages. Ground investigations that provide information on the subsurface are necessary prior to the construction phase, but these can be logistically difficult. Geophysics can help close the gaps between local point information by producing subsurface images. An approach that combines seismic refraction tomography and electrical resistivity tomography has been tested at the Äspö Hard Rock Laboratory (HRL). The aim was to detect fracture zones in a well-known but logistically challenging area from a measuring perspective. The presented surveys cover a water passage along part of a tunnel that connects surface facilities with an underground test laboratory. The tunnel is approximately 100 m below and 20 m east of the survey line and gives evidence for one major and several minor fracture zones. The geological and general test site conditions, e.g. with strong power line noise from the nearby nuclear power plant, are challenging for geophysical measurements. Co-located positions for seismic and ERT sensors and source positions are used on the 450 m underwater section of the 700 m profile. Because of a large transition zone that appeared in the ERT result and the missing coverage of the seismic data, fracture zones at the southern and northern parts of the underwater passage cannot be detected by separated inversion. Synthetic studies show that significant three-dimensional (3-D) artefacts occur in the ERT model that even exceed the positioning errors of underwater electrodes. The model coverage is closely connected to the resolution and can be used to display the model uncertainty by introducing thresholds to fade-out regions of medium and low resolution. A structural coupling cooperative inversion approach is able to image the northern fracture zone successfully. In addition, previously unknown sedimentary deposits with a significantly large thickness are detected in the otherwise unusually well-documented geological environment. The results significantly improve the imaging of some geologic features, which would have been undetected or misinterpreted otherwise, and combines the images by means of cluster analysis into a conceptual subsurface model.
  • Item
    Structural style and neotectonic activity along the Harz Boundary Fault, northern German: a multimethod approach integrating geophysics, outcrop data and numerical simulations
    (Berlin ; Heidelberg : Springer, 2020) Müller, Katharina; Polom, Ulrich; Winsemann, Jutta; Steffen, Holger; Tsukamoto, Sumiko; Günther, Thomas; Igel, Jan; Spies, Thomas; Lege, Thomas; Frechen, Manfred; Franzke, Hans‑Joachim; Brandes, Christian
    We present new evidence for neotectonic activity along the Harz Boundary Fault, a Cretaceous reverse fault that represents a key structure in northern Germany. For the fault analysis, we use a multimethod approach, integrating outcrop data, luminescene dating, shear wave seismics, electrical resistivity tomography (ERT) and numerical simulations. A recent sinkhole at the SSW-ward dipping and WNW–ESE striking Harz Boundary Fault exposes a NNE-ward dipping and WNW–ESE striking planar fault surface that cuts through unconsolidated debris-flow deposits thus pointing to young Lateglacial tectonic activity. The fault shows a polyphase evolution with initial normal fault movement and a later reactivation as an oblique fault with reverse and strike-slip components. A shear wave seismic profile was acquired to analyse the geometry of the fault and show that the Harz Boundary Fault is steeply dipping and likely has branches. Partly, these branches propagate into overlying alluvial-fan deposits that are probably Pleniglacial to Lateglacial in age. The outcrop data in combination with the seismic data give evidence for a splay fault system with steep back-thrusts. One of these back-thrusts is most likely the NNE-ward dipping fault that is exposed in the sinkhole. The lateral extent of the fault was mapped with electrical resistivity tomography (ERT) profiles. The timing of fault movement was estimated based on optically stimulated luminescence dating of the faulted debris-flow deposits using both quartz and feldspar minerals. Consistent feldspar and quartz ages indicate a good bleaching of the sediment prior to deposition. The results imply fault movements post-dating ~ 15 ka. Numerical simulations of glacio isostatic adjustment (GIA)-related changes in the Coulomb failure stress regime at the Harz Boundary Fault underpin the assumption that the fault was reactivated during the Lateglacial due to stress changes induced by the decay of the Late Pleistocene (Weichselian) Fennoscandian ice sheet. © 2020, The Author(s).
  • Item
    Evaluation of spectral induced polarization field measurements in time and frequency domain
    (Amsterdam [u.a.] : Elsevier Science, 2020) Martin, Tina; Günther, Thomas; Orozco, Adrian Flores; Dahlin, Torleif
    Spectral induced polarization (SIP) measurements have been demonstrated to correlate with important parameters in hydrogeological and environmental investigations. Although SIP measurements were often collected in the frequency domain (FDIP), recent developments have demonstrated the capabilities to solve for the frequency-dependence of the complex conductivity through measurements collected in the time domain (TDIP). Therefore, the aim of our field investigations is a comparison of the measured frequency-dependence at a broad frequency range resolved through FDIP and TDIP. In contrast to previous studies, we conducted measurements with different instruments and measuring technologies for both FDIP and TDIP. This allows for investigating the robustness of different measurements and assessing various sources of errors, for the assessment of the advantages and drawbacks from different measuring techniques. Our results demonstrate that data collected through different instruments are consistent. Apparent resistivity measurements as well as the inversion results revealed quantitatively the same values for all instruments. The measurements of the IP effect are also comparable, particularly FDIP readings in the low frequencies (< 10 Hz) revealed to be quantitatively the same for different instruments. TDIP measurements are consistent for data collected with both devices. As expected, the spatial distribution of the values is also consistent for low frequency data (in FDIP) and late times measurements in TDIP (> 0.1 s). However, data quality for higher frequencies in FDIP (i.e., early times in TDIP) show larger variations, which reflects the differences between the instruments to deal with the electromagnetic contamination of the IP data. Concluded in general, the different instruments and measuring techniques can provide consistent responses for varying signal-to-noise ratio and measuring configurations. © 2020 The Authors
  • Item
    Comparison of novel semi-airborne electromagnetic data with multi-scale geophysical, petrophysical and geological data from Schleiz, Germany
    (Amsterdam [u.a.] : Elsevier Science, 2020) Steuer, Annika; Smirnova, Maria; Becken, Michael; Schiffler, Markus; Günther, Thomas; Rochlitz, Raphael; Yogeshwar, Pritam; Mörbe, Wiebke; Siemon, Bernhard; Costabel, Stephan; Preugschat, Benedikt; Ibs-von Seht, Malte; Zampa, Luigi Sante; Müller, Franz
    In the framework of the Deep Electromagnetic Sounding for Mineral EXploration (DESMEX) project, we carried out multiple geophysical surveys from regional to local scales in a former mining area in the state of Thuringia, Germany. We prove the applicability of newly developed semi-airborne electromagnetic (EM) systems for mineral exploration by cross-validating inversion results with those of established airborne and ground-based investigation techniques. In addition, supporting petrophysical and geological information to our geophysical measurements allowed the synthesis of all datasets over multiple scales. An initial regional-scale reconnaissance survey was performed with BGR's standard helicopter-borne geophysical system deployed with frequency-domain electromagnetic (HEM), magnetic and radiometric sensors. In addition to geological considerations, the HEM results served as base-line information for the selection of an optimal location for the intermediate-scale semi-airborne EM experiments. The semi-airborne surveys utilized long grounded transmitters and two independent airborne receiver instruments: induction coil magnetometers and SQUID sensors. Due to the limited investigation depth of the HEM method, local-scale electrical resistivity tomography (ERT) and long-offset transient electromagnetic (LOTEM) measurements were carried out on a reference profile, enabling the validation of inversion results at greater depths. The comparison of all inversion results provided a consistent overall resistivity distribution. It further confirmed that both semi-airborne receiver instruments achieve the bandwidth and sensitivity required for the investigation of the resistivity structure down to 1 km depth and therewith the detection of deeply seated earth resources. A 3D geological model, lithological and geophysical borehole logs as well as petrophysical investigations were integrated to interpret of the geophysical results. Distinct highly-conductive anomalies with resistivities of less than 10 Om were identified as alum shales over all scales. Apart from that, the petrophysical investigations exhibited that correlating geophysical and geological information using only one single parameter, such as the electrical resistivity, is hardly possible. Therefore, we developed a first approach based on clustering methods and self-organizing maps (SOMs) that allowed us to assign geological units at the surface to a given combination of geophysical and petrophysical parameters, obtained on different scales. © 2020 The Authors
  • Item
    custEM: Customizable finite-element simulation of complex controlled-source electromagnetic data
    (Tulsa, Okla. : SEG, 2019) Rochlitz, Raphael; Skibbe, Nico; Günther, Thomas
    We have developed the open-source toolbox custEM (customizable electromagnetic modeling) for the simulation of complex 3D controlled-source electromagnetic (CSEM) problems. It is based on the open-source finite-element library FEniCS, which supports tetrahedral meshes, multiprocessing, higher order polynomials, and anisotropy. We use multiple finite-element approaches to solve the time-harmonic Maxwell equations, which are based on total or secondary electric field and gauged potential formulations. In addition, we develop a secondary magnetic field formulation, showing superior performance if only magnetic fields are required. Using Nédélec basis functions, we robustly incorporate the current density on the edges of the mesh for the total field formulations. The latter enable modeling of CSEM problems taking topography into account. We evaluate semianalytical 1D layered-earth solutions with the pyhed library, supporting arbitrary configurations of dipole or loop sources for secondary field calculations. All system matrices have been modified to be symmetric and solved in parallel with the direct solver MUMPS. Aside from the finite-element kernel, mesh generation, interpolation, and visualization modules have been implemented to simplify and automate the modeling workflow. We prove the capability of custEM, including validation against analytic-solutions, crossvalidation of all implemented approaches, and results for a model with 3D topography with four examples. The object-oriented implementation allows for customizable modifications and additions or to use only submodules designed for special tasks, such as mesh generation or matrix assembly. Therefore, the toolbox is suitable for crossvalidation with other codes and as the basis for developing 3D inversion routines.
  • Item
    Classification of slag material by spectral induced polarization laboratory and field measurements
    (Amsterdam [u.a.] : Elsevier Science, 2021) Martin, Tina; Günther, Thomas; Weller, Andreas; Kuhn, Kerstin
    Historical slag dumps are of increasing interest due to economic, environmental or archaeological reasons. Geophysical investigations can help accessing the potential reuse of slag material to recover metallic raw material or for the estimation of the hazard potential of the buried slag material due to dissolution occurrence. In our study, we have investigated various slag material in the laboratory with the spectral induced polarization (SIP) method, obtained from different historical slag dumps, located in the Harz Mountains, Germany. We also present SIP results from field measurements at a historical slag dump where most of the slag samples reveal high amounts of iron, zinc, silica, and barium. Our results reveal a discrimination between three different slag grades (low, medium, high) by using the imaginary conductivity σ″ at a medium frequency (1–10 Hz) in both laboratory and field. Furthermore, additional information is obtained by a classification based on the spectral polarization behaviour and considering the field frequency range (0.1 Hz – 100 Hz). Five different types of spectra (ascending, descending, constant, maximum and minimum type) can be discriminated and recognized in the laboratory and in distinct areas of the slag dump. Even though a direct comparison between the laboratory and field results still needs to be proven, the buried slag material can be differentiated from the surrounding material by the polarization magnitude.
  • Item
    Large-scale electrical resistivity tomography in the Cheb Basin (Eger Rift) at an International Continental Drilling Program (ICDP) monitoring site to image fluid-related structures
    (Göttingen : Copernicus Publ., 2019) Nickschick, Tobias; Flechsig, Christina; Mrlina, Jan; Oppermann, Frank; Löbig, Felix; Günther, Thomas
    The Cheb Basin, a region of ongoing swarm earthquake activity in the western Czech Republic, is characterized by intense carbon dioxide degassing along two known fault zones – the N–S-striking Počatky–Plesná fault zone (PPZ) and the NW–SE-striking Mariánské Lázně fault zone (MLF). The fluid pathways for the ascending CO2 of mantle origin are one of the subjects of the International Continental Scientific Drilling Program (ICDP) project “Drilling the Eger Rift” in which several geophysical surveys are currently being carried out in this area to image the topmost hundreds of meters to assess the structural situation, as existing boreholes are not sufficiently deep to characterize it. As electrical resistivity is a sensitive parameter to the presence of conductive rock fractions as liquid fluids, clay minerals, and also metallic components, a large-scale dipole–dipole experiment using a special type of electric resistivity tomography (ERT) was carried out in June 2017 in order to image fluid-relevant structures. We used permanently placed data loggers for voltage measurements in conjunction with moving high-power current sources to generate sufficiently strong signals that could be detected all along the 6.5 km long profile with 100 and 150 m dipole spacings. After extensive processing of time series for voltage and current using a selective stacking approach, the pseudo-section is inverted, which results in a resistivity model that allows for reliable interpretations depths of up than 1000 m. The subsurface resistivity image reveals the deposition and transition of the overlying Neogene Vildštejn and Cypris formations, but it also shows a very conductive basement of phyllites and granites that can be attributed to high salinity or rock alteration by these fluids in the tectonically stressed basement. Distinct, narrow pathways for CO2 ascent are not observed with this kind of setup, which hints at wide degassing structures over several kilometers within the crust instead. We also observed gravity and GPS data along this profile in order to constrain ERT results. A gravity anomaly of ca. −9 mGal marks the deepest part of the Cheb Basin where the ERT profile indicates a large accumulation of conductive rocks, indicating a very deep weathering or alteration of the phyllitic basement due to the ascent of magmatic fluids such as CO2. We propose a conceptual model in which certain lithologic layers act as caps for the ascending fluids based on stratigraphic records and our results from this experiment, providing a basis for future drillings in the area aimed at studying and monitoring fluids.
  • Item
    Der Untergrund von Borkum: Geologie und Grundwasser : Ergebnisse des INTERREG-Projektes CLIWAT : Leibniz Jahr 2016
    (Hannover : Technische Informationsbibliothek (TIB), 2016) Burschil, Thomas; Elbracht, Jörg; Griffel, Grit; Grinat, Michael; Günther, Thomas; Ibentahl, Miriam; Igel, Jan; Simon, Bernhard; Sulzbacher, Hans; Weustink, Andree; Wiederhold, Helga; Winter, Sebastian
    [no abstract available]