Search Results

Now showing 1 - 10 of 19
  • Item
    Asymmetry and uncertainties in biogeophysical climate-vegetation feedback over a range of CO2 forcings
    (München : European Geopyhsical Union, 2014) Willeit, M.; Ganopolski, A.; Feulner, G.
    Climate–vegetation feedback has the potential to significantly contribute to climate change, but little is known about its range of uncertainties. Here, using an Earth system model of intermediate complexity we address possible uncertainties in the strength of the biogeophysical climate–vegetation feedback using a single-model multi-physics ensemble. Equilibrium experiments with halving (140 ppm) and doubling (560 ppm) of CO2 give a contribution of the vegetation–climate feedback to global temperature change in the range −0.3 to −0.1 °C and −0.1 to 0.2 °C, respectively. There is an asymmetry between warming and cooling, with a larger, positive vegetation–climate feedback in the lower CO2 climate. Hotspots of climate–vegetation feedback are the boreal zone, the Amazon rainforest and the Sahara. Albedo parameterization is the dominant source of uncertainty in the subtropics and at high northern latitudes, while uncertainties in evapotranspiration are more relevant in the tropics. We analyse the separate impact of changes in stomatal conductance, leaf area index and vegetation dynamics on climate and we find that different processes are dominant in lower and higher CO2 worlds. The reduction in stomatal conductance gives the main contribution to temperature increase for a doubling of CO2, while dynamic vegetation is the dominant process in the CO2 halving experiments. Globally the climate–vegetation feedback is rather small compared to the sum of the fast climate feedbacks. However, it is comparable to the amplitude of the fast feedbacks at high northern latitudes where it can contribute considerably to polar amplification. The uncertainties in the climate–vegetation feedback are comparable to the multi-model spread of the fast climate feedbacks.
  • Item
    On the effect of orbital forcing on mid-Pliocene climate, vegetation and ice sheets
    (München : European Geopyhsical Union, 2013) Willeit, M.; Ganopolski, A.; Feulner, G.
    We present results from modelling of the mid-Pliocene warm period (3.3–3 million years ago) using the Earth system model of intermediate complexity CLIMBER-2 analysing the effect of changes in boundary conditions as well as of orbital forcing on climate. First we performed equilibrium experiments following the PlioMIP (Pliocene Model Intercomparison Project) protocol with a CO2 concentration of 405 ppm, reconstructed mid-Pliocene orography and vegetation and a present-day orbital configuration. Simulated global Pliocene warming is about 2.5 °C, fully consistent with results of atmosphere–ocean general circulation model simulations performed for the same modelling setup. A factor separation analysis attributes 1.5 °C warming to CO2, 0.3 °C to orography, 0.2 °C to ice sheets and 0.4 °C to vegetation. Transient simulations for the entire mid-Pliocene warm period with time-dependent orbital forcing as well as interactive ice sheets and vegetation give a global warming varying within the range 1.9–2.8 °C. Ice sheet and vegetation feedbacks in synergy act as amplifiers of the orbital forcing, transforming seasonal insolation variations into an annual mean temperature signal. The effect of orbital forcing is more significant at high latitudes, especially during boreal summer, when the warming over land varies in the wide range from 0 to 10 °C. The modelled ice-sheet extent and vegetation distribution also show significant temporal variations. Modelled and reconstructed data for Northern Hemisphere sea-surface temperatures and vegetation distribution show the best agreement if the reconstructions are assumed to be representative for the warmest periods during the orbital cycles. This suggests that low-resolution Pliocene palaeoclimate reconstructions can reflect not only the impact of increased CO2 concentrations and topography changes but also the effect of orbital forcing. Therefore, the climate (Earth system) sensitivity estimates from Pliocene reconstructions which do not account for the effect of orbital forcing can be biased toward high values.
  • Item
    Coupled Northern Hemisphere permafrost-ice-sheet evolution over the last glacial cycle
    (München : European Geopyhsical Union, 2015) Willeit, M.; Ganopolski, A.
    Permafrost influences a number of processes which are relevant for local and global climate. For example, it is well known that permafrost plays an important role in global carbon and methane cycles. Less is known about the interaction between permafrost and ice sheets. In this study a permafrost module is included in the Earth system model CLIMBER-2, and the coupled Northern Hemisphere (NH) permafrost–ice-sheet evolution over the last glacial cycle is explored. The model performs generally well at reproducing present-day permafrost extent and thickness. Modeled permafrost thickness is sensitive to the values of ground porosity, thermal conductivity and geothermal heat flux. Permafrost extent at the Last Glacial Maximum (LGM) agrees well with reconstructions and previous modeling estimates. Present-day permafrost thickness is far from equilibrium over deep permafrost regions. Over central Siberia and the Arctic Archipelago permafrost is presently up to 200–500 m thicker than it would be at equilibrium. In these areas, present-day permafrost depth strongly depends on the past climate history and simulations indicate that deep permafrost has a memory of surface temperature variations going back to at least 800 ka. Over the last glacial cycle permafrost has a relatively modest impact on simulated NH ice sheet volume except at LGM, when including permafrost increases ice volume by about 15 m sea level equivalent in our model. This is explained by a delayed melting of the ice base from below by the geothermal heat flux when the ice sheet sits on a porous sediment layer and permafrost has to be melted first. Permafrost affects ice sheet dynamics only when ice extends over areas covered by thick sediments, which is the case at LGM.
  • Item
    Sensitivity simulations with direct shortwave radiative forcing by aeolian dust during glacial cycles
    (München : European Geopyhsical Union, 2014) Bauer, E.; Ganopolski, A.
    Possible feedback effects between aeolian dust, climate and ice sheets are studied for the first time with an Earth system model of intermediate complexity over the late Pleistocene period. Correlations between climate and dust deposition records suggest that aeolian dust potentially plays an important role for the evolution of glacial cycles. Here climatic effects from the dust direct radiative forcing (DRF) caused by absorption and scattering of solar radiation are investigated. Key elements controlling the dust DRF are the atmospheric dust distribution and the absorption-scattering efficiency of dust aerosols. Effective physical parameters in the description of these elements are varied within uncertainty ranges known from available data and detailed model studies. Although the parameters can be reasonably constrained, the simulated dust DRF spans a~wide uncertainty range related to the strong nonlinearity of the Earth system. In our simulations, the dust DRF is highly localized. Medium-range parameters result in negative DRF of several watts per square metre in regions close to major dust sources and negligible values elsewhere. In the case of high absorption efficiency, the local dust DRF can reach positive values and the global mean DRF can be insignificantly small. In the case of low absorption efficiency, the dust DRF can produce a significant global cooling in glacial periods, which leads to a doubling of the maximum glacial ice volume relative to the case with small dust DRF. DRF-induced temperature and precipitation changes can either be attenuated or amplified through a feedback loop involving the dust cycle. The sensitivity experiments suggest that depending on dust optical parameters, dust DRF has the potential to either damp or reinforce glacial–interglacial climate changes.
  • Item
    MIS-11 duration key to disappearance of the Greenland ice sheet
    (London : Nature Publishing Group, 2017) Robinson, A.; Alvarez-Solas, J.; Calov, R.; Ganopolski, A.; Montoya, M.
    Palaeo data suggest that Greenland must have been largely ice free during Marine Isotope Stage 11 (MIS-11). However, regional summer insolation anomalies were modest during this time compared to MIS-5e, when the Greenland ice sheet likely lost less volume. Thus it remains unclear how such conditions led to an almost complete disappearance of the ice sheet. Here we use transient climate-ice sheet simulations to simultaneously constrain estimates of regional temperature anomalies and Greenland's contribution to the MIS-11 sea-level highstand. We find that Greenland contributed 6.1 m (3.9-7.0 m, 95% credible interval) to sea level, ∼7 kyr after the peak in regional summer temperature anomalies of 2.8 °C (2.1-3.4 °C). The moderate warming produced a mean rate of mass loss in sea-level equivalent of only around 0.4 m per kyr, which means the long duration of MIS-11 interglacial conditions around Greenland was a necessary condition for the ice sheet to disappear almost completely.
  • Item
    Greenland ice sheet model parameters constrained using simulations of the Eemian Interglacial
    (München : European Geopyhsical Union, 2011) Robinson, A.; Calov, R.; Ganopolski, A.
    Using a new approach to force an ice sheet model, we performed an ensemble of simulations of the Greenland Ice Sheet evolution during the last two glacial cycles, with emphasis on the Eemian Interglacial. This ensemble was generated by perturbing four key parameters in the coupled regional climate-ice sheet model and by introducing additional uncertainty in the prescribed "background" climate change. The sensitivity of the surface melt model to climate change was determined to be the dominant driver of ice sheet instability, as reflected by simulated ice sheet loss during the Eemian Interglacial period. To eliminate unrealistic parameter combinations, constraints from present-day and paleo information were applied. The constraints include (i) the diagnosed present-day surface mass balance partition between surface melting and ice discharge at the margin, (ii) the modeled present-day elevation at GRIP; and (iii) the modeled elevation reduction at GRIP during the Eemian. Using these three constraints, a total of 360 simulations with 90 different model realizations were filtered down to 46 simulations and 20 model realizations considered valid. The paleo constraint eliminated more sensitive melt parameter values, in agreement with the surface mass balance partition assumption. The constrained simulations resulted in a range of Eemian ice loss of 0.4–4.4 m sea level equivalent, with a more likely range of about 3.7–4.4 m sea level if the GRIP δ18O isotope record can be considered an accurate proxy for the precipitation-weighted annual mean temperatures.
  • Item
    Heinrich event 1: An example of dynamical ice-sheet reaction to oceanic changes
    (München : European Geopyhsical Union, 2011) Álvarez-Solas, J.; Montoya, M.; Ritz, C.; Ramstein, G.; Charbit, S.; Dumas, C.; Nisancioglu, K.; Dokken, T.; Ganopolski, A.
    Heinrich events, identified as enhanced ice-rafted detritus (IRD) in North Atlantic deep sea sediments (Heinrich, 1988; Hemming, 2004) have classically been attributed to Laurentide ice-sheet (LIS) instabilities (MacAyeal, 1993; Calov et al., 2002; Hulbe et al., 2004) and assumed to lead to important disruptions of the Atlantic meridional overturning circulation (AMOC) and North Atlantic deep water (NADW) formation. However, recent paleoclimate data have revealed that most of these events probably occurred after the AMOC had already slowed down or/and NADW largely collapsed, within about a thousand years (Hall et al., 2006; Hemming, 2004; Jonkers et al., 2010; Roche et al., 2004), implying that the initial AMOC reduction could not have been caused by the Heinrich events themselves. Here we propose an alternative driving mechanism, specifically for Heinrich event 1 (H1; 18 to 15 ka BP), by which North Atlantic ocean circulation changes are found to have strong impacts on LIS dynamics. By combining simulations with a coupled climate model and a three-dimensional ice sheet model, our study illustrates how reduced NADW and AMOC weakening lead to a subsurface warming in the Nordic and Labrador Seas resulting in rapid melting of the Hudson Strait and Labrador ice shelves. Lack of buttressing by the ice shelves implies a substantial ice-stream acceleration, enhanced ice-discharge and sea level rise, with peak values 500–1500 yr after the initial AMOC reduction. Our scenario modifies the previous paradigm of H1 by solving the paradox of its occurrence during a cold surface period, and highlights the importance of taking into account the effects of oceanic circulation on ice-sheets dynamics in order to elucidate the triggering mechanism of Heinrich events.
  • Item
    The modern and glacial overturning circulation in the Atlantic ocean in PMIP coupled model simulations
    (München : European Geopyhsical Union, 2007) Weber, S.L.; Drijfhout, S.S.; Abe-Ouchi, A.; Crucifix, M.; Eby, M.; Ganopolski, A.; Murakami, S.; Otto-Bliesner, B.; Peltier, W.R.
    This study analyses the response of the Atlantic meridional overturning circulation (AMOC) to LGM forcings and boundary conditions in nine PMIP coupled model simulations, including both GCMs and Earth system Models of Intermediate Complexity. Model results differ widely. The AMOC slows down considerably (by 20–40%) during the LGM as compared to the modern climate in four models, there is a slight reduction in one model and four models show a substantial increase in AMOC strength (by 10–40%). It is found that a major controlling factor for the AMOC response is the density contrast between Antarctic Bottom Water (AABW) and North Atlantic Deep Water (NADW) at their source regions. Changes in the density contrast are determined by the opposing effects of changes in temperature and salinity, with more saline AABW as compared to NADW consistently found in all models and less cooling of AABW in all models but one. In only two models is the AMOC response during the LGM directly related to the response in net evaporation over the Atlantic basin. Most models show large changes in the ocean freshwater transports into the basin, but this does not seem to affect the AMOC response. Finally, there is some dependence on the accuracy of the control state.
  • Item
    Modeling sensitivity study of the possible impact of snow and glaciers developing over Tibetan Plateau on Holocene African-Asian summer monsoon climate
    (München : European Geopyhsical Union, 2009) Jin, L.; Peng, Y.; Chen, F.; Ganopolski, A.
    The impacts of various scenarios of a gradual snow and glaciers developing over the Tibetan Plateau on climate change in Afro-Asian monsoon region and other regions during the Holocene (9 kyr BP–0 kyr BP) are studied by using the Earth system model of intermediate complexity, CLIMBER-2. The simulations show that the imposed snow and glaciers over the Tibetan Plateau in the mid-Holocene induce global summer temperature decreases over most of Eurasia but in the Southern Asia temperature response is opposite. With the imposed snow and glaciers, summer precipitation decreases strongly in North Africa and South Asia as well as northeastern China, while it increases in Southeast Asia and the Mediterranean. For the whole period of Holocene (9 kyr BP–0 kyr BP), the response of vegetation cover to the imposed snow and glaciers cover over the Tibetan Plateau is not synchronous in South Asia and in North Africa, showing an earlier and a more rapid decrease in vegetation cover in North Africa from 9 kyr BP to 6 kyr BP while it has only minor influence on that in South Asia until 5 kyr BP. The precipitation decreases rapidly in North Africa and South Asia while it decreases slowly or unchanged during 6 kyr BP to 0 kyr BP with imposed snow and glacier cover over the Tibetan Plateau. The different scenarios of snow and glacier developing over the Tibetan Plateau would result in differences in variation of temperature, precipitation and vegetation cover in North Africa, South Asia and Southeast Asia. The model results suggest that the development of snow and ice cover over Tibetan Plateau represents an additional important climate feedback, which amplify orbital forcing and produces a significant synergy with the positive vegetation feedback.
  • Item
    Quantifying the effect of vegetation dynamics on the climate of the last glacial maximum
    (München : European Geopyhsical Union, 2005) Jahn, A.; Claussen, M.; Ganopolski, A.; Brovkin, V.
    The importance of the biogeophysical atmosphere-vegetation feedback in comparison with the radiative effect of lower atmospheric CO2 concentrations and the presence of ice sheets at the last glacial maximum (LGM) is investigated with the climate system model CLIMBER-2. Equilibrium experiments reveal that most of the global cooling at the LGM (-5.1°C) relative to (natural) present-day conditions is caused by the introduction of ice sheets into the model (-3.0°C), followed by the effect of lower atmospheric CO2 levels at the LGM (-1.5°C), while a synergy between these two factors appears to be very small on global average. The biogeophysical effects of changes in vegetation cover are found to cool the global LGM climate by 0.6°C. The latter are most pronounced in the northern high latitudes, where the taiga-tundra feedback causes annually averaged temperature changes of up to -2.0°C, while the radiative effect of lower atmospheric CO2 in this region only produces a cooling of 1.5°C. Hence, in this region, the temperature changes caused by vegetation dynamics at the LGM exceed the cooling due to lower atmospheric CO2 concentrations.