Search Results

Now showing 1 - 4 of 4
Loading...
Thumbnail Image
Item

Graphene-Like ZnO: A Mini Review

2016, Ta, Huy Q., Zhao, Liang, Pohl, Darius, Pang, Jinbo, Trzebicka, Barbara, Rellinghaus, Bernd, Pribat, Didier, Gemming, Thomas, Liu, Zhongfan, Bachmatiuk, Alicja, Rümmeli, Mark H.

The isolation of a single layer of graphite, known today as graphene, not only demonstrated amazing new properties but also paved the way for a new class of materials often referred to as two-dimensional (2D) materials. Beyond graphene, other 2D materials include h-BN, transition metal dichalcogenides (TMDs), silicene, and germanene, to name a few. All tend to have exciting physical and chemical properties which appear due to dimensionality effects and modulation of their band structure. A more recent member of the 2D family is graphene-like zinc oxide (g-ZnO) which also holds great promise as a future functional material. This review examines current progress in the synthesis and characterization of g-ZnO. In addition, an overview of works dealing with the properties of g-ZnO both in its pristine form and modified forms (e.g., nano-ribbon, doped material, etc.) is presented. Finally, discussions/studies on the potential applications of g-ZnO are reviewed and discussed.

Loading...
Thumbnail Image
Item

In Situ N-Doped Graphene and Mo Nanoribbon Formation from Mo2Ti2C3 MXene Monolayers

2020, Mendes, Rafael Gregorio, Ta, Huy Quang, Yang, Xiaoqin, Li, Wei, Bachmatiuk, Alicja, Choi, Jin-Ho, Gemming, Thomas, Anasori, Babak, Lijun, Liu, Fu, Lei, Liu, Zhongfan, Rümmeli, Mark Hermann

Since the advent of monolayered 2D transition metal carbide and nitrides (MXenes) in 2011, the number of different monolayer systems and the study thereof have been on the rise. Mo2Ti2C3 is one of the least studied MXenes and new insights to this material are of value to the field. Here, the stability of Mo2Ti2C3 under electron irradiation is investigated. A transmission electron microscope (TEM) is used to study the structural and elemental changes in situ. It is found that Mo2Ti2C3 is reasonably stable for the first 2 min of irradiation. However, structural changes occur thereafter, which trigger increasingly rapid and significant rearrangement. This results in the formation of pores and two new nanomaterials, namely, N-doped graphene membranes and Mo nanoribbons. The study provides insight into the stability of Mo2Ti2C3 monolayers against electron irradiation, which will allow for reliable future study of the material using TEM. Furthermore, these findings will facilitate further research in the rapidly growing field of electron beam driven chemistry and engineering of nanomaterials. © 2020 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

Loading...
Thumbnail Image
Item

In Situ Room Temperature Electron-Beam Driven Graphene Growth from Hydrocarbon Contamination in a Transmission Electron Microscope

2018-5-26, Rummeli, Mark H., Pan, Yumo, Zhao, Liang, Gao, Jing, Ta, Huy Q., Martinez, Ignacio G., Mendes, Rafael G., Gemming, Thomas, Fu, Lei, Bachmatiuk, Alicja, Liu, Zhongfan

The excitement of graphene (as well as 2D materials in general) has generated numerous procedures for the fabrication of graphene. Here we present a mini-review on a rather less known, but attractive, in situ means to fabricate graphene inside a transmission electron microscope (TEM). This is achieved in a conventional TEM (viz. no sophisticated specimen holders or microscopes are required) and takes advantage of inherent hydrocarbon contamination as a carbon source. Both catalyst free and single atom catalyst approaches are reviewed. An advantage of this technique is that not only can the growth process be imaged in situ, but this can also be achieved with atomic resolution. Moreover, in the future, one can anticipate such approaches enabling the growth of nano-materials with atomic precision.

Loading...
Thumbnail Image
Item

Rapid synthesis of pristine graphene inside a transmission electron microscope using gold as catalyst

2019, Gonzalez-Martinez, Ignacio G., Bachmatiuk, Alicja, Gemming, Thomas, Trzebicka, Barbara, Liu, Zhongfan, Rummeli, Mark H.

Multiple methods with distinctive strengths and drawbacks have been devised so far to produce graphene. However, they all need post-synthesis transfer steps to characterize the product. Here we report the synthesis of pristine graphene inside the transmission electron microscope using gold as catalyst and self-removing substrate without employing a specialized specimen holder. The process occurs at room temperature and takes place within milliseconds. The method offers the possibility of precise spatial control for graphene production and immediate characterization. Briefly, the irradiating electrons generate secondary electrons leading to surface charging if the gold particles reside on a poorly conducting support. At a critical charge density, the particle ejects ions mixed with secondary electrons (plasma) causing the particle to shrink. Simultaneously, hydrocarbon contamination within the electron microscope is cracked, thus providing carbon for the growth of graphene on the particle’s surface. The Technique is potentially attractive for the manufacture of in situ graphene-based devices. © 2019, The Author(s).