Search Results

Now showing 1 - 2 of 2
  • Item
    Capability study of Ti, Cr, W, Ta and Pt as seed layers for electrodeposited platinum films on γ-Al2O3 for high temperature and harsh environment applications
    (Basel : MDPI, 2017) Seifert, Marietta; Brachmann, Erik; Rane, Gayatri K.; Menzel, Siegfried B.; Gemming, Thomas
    High temperature surface acoustic wave sensors based on radio frequency identification technology require adequate antennas of high efficiency and thermal stability for the signal transmission. Platinum is well known and frequently used as a material of choice for high temperature and harsh environment applications because of the high melting point and its chemical stability. Therefore, one way to realize high temperature stable antennas is the combination of a Pt metallization on an Al 2 O 3 substrate. As a cost-effective technique, the Pt film is deposited via electrochemical deposition. For this growth procedure, a pre-deposited metallization on the Al 2 O 3 layer is required. This paper analyzes the influence of various seed layers (Ta, Ti, W, Cr, Pt) on the morphology, stability and electrical properties of the electrochemically-grown Pt thick film after heat treatments up to 1000 ∘ C in air. We find an oxidation of all adhesion layers except for Pt, for which the best electrical properties were measured. Although significant areas of the films delaminate from the substrate, individual anchor structures retain a stable connection between the Pt layer and the rough Al 2 O 3 substrate.
  • Item
    Stress and Microstructure Evolution in Mo Thin Films without or with Cover Layers during Thermal-Cycling
    (Basel : MDPI, 2020) Park, Eunmi; Seifert, Marietta; Rane, Gayatri K.; Menzel, Siegfried B.; Gemming, Thomas; Nielsch, Kornelius
    The intrinsic stress behavior and microstructure evolution of Molybdenum thin films were investigated to evaluate their applicability as a metallization in high temperature microelectronic devices. For this purpose, 100 nm thick Mo films were sputter-deposited without or with an AlN or SiO2 cover layer on thermally oxidized Si substrates. The samples were subjected to thermal cycling up to 900 °C in ultrahigh vacuum; meanwhile, the in-situ stress behavior was monitored by a laser based Multi-beam Optical Sensor (MOS) system. After preannealing at 900 °C for 24 h, the uncovered films showed a high residual stress at room temperature and a plastic behavior at high temperatures, while the covered Mo films showed an almost entirely elastic deformation during the thermal cycling between room temperature and 900 °C with hardly any plastic deformation, and a constant stress value during isothermal annealing without a notable creep. Furthermore, after thermal cycling, the Mo films without as well as with a cover layer showed low electrical resistivity (≤10 μΩ·cm).