Search Results

Now showing 1 - 10 of 11
  • Item
    Local stratopause temperature variabilities and their embedding in the global context
    (Göttingen : Copernicus Publ., 2020) Eixmann, Ronald; Matthias, Vivien; Höffner, Josef; Baumgarten, Gerd; Gerding, Michael
    The stratopause is by definition the transition between the stratosphere and mesosphere. During winter the circulation at mid-latitudes and high latitudes in the stratosphere is mainly driven by quasi-stationary planetary waves (PWs), while the circulation in the mesosphere is mainly driven by gravity waves (GWs). The question arises of whether PWs or GWs dominate the variability of the stratopause. The most famous and dramatic variability of the middle atmosphere is a sudden stratospheric warming (SSW) generated by PWs interacting with the polar vortex. A similar phenomenon but smaller in magnitude and more regional is stratopause temperature enhancements (STEs) initially observed by local measurements and generated by breaking PWs. Thus it seems that PWs dominate the variability of the stratopause. In this study we want to quantify to which extent quasi-stationary PWs contribute to the stratopause variability. To do that we combine local lidar observations at Kühlungsborn (54∘ N, 11∘ E) and Andenes (69∘ N, 16∘ E) with global MERRA-2 reanalysis data bringing the local variability of the stratopause into the global context. Therefore we compare the temperature time series at Kühlungsborn and Andenes at 2 hPa, the altitude where STEs maximize, with characteristics (amplitude and phase) of PWs with wave numbers 1, 2 and 3. We found that for Kühlungsborn and Andenes 98 % of the local day-to-day variability of the stratopause can be explained by the variability of PWs with wave number 1, 2 and 3. Thus, the winter stratopause day-to-day variability is highly dominated by the variability of PWs.
  • Item
    A new model of meteoric calcium in the mesosphere and lower thermosphere
    (Katlenburg-Lindau : EGU, 2018-10-16) Plane, John M. C.; Feng, Wuhu; Gómez Martín, Juan Carlos; Gerding, Michael; Raizada, Shikha
    Meteoric ablation produces layers of metal atoms in the mesosphere and lower thermosphere (MLT). It has been known for more than 30 years that the Ca atom layer is depleted by over 2 orders of magnitude compared with Na, despite these elements having nearly the same elemental abundance in chondritic meteorites. In contrast, the Ca+ ion abundance is depleted by less than a factor of 10. To explain these observations, a large database of neutral and ion–molecule reaction kinetics of Ca species, measured over the past decade, was incorporated into the Whole Atmosphere Community Climate Model (WACCM). A new meteoric input function for Ca and Na, derived using a chemical ablation model that has been tested experimentally with a Meteoric Ablation Simulator, shows that Ca ablates almost 1 order of magnitude less efficiently than Na. WACCM-Ca simulates the seasonal Ca layer satisfactorily when compared with lidar observations, but tends to overestimate Ca+ measurements made by rocket mass spectrometry and lidar. A key finding is that CaOH and CaCO3 are very stable reservoir species because they are involved in essentially closed reaction cycles with O2 and O. This has been demonstrated experimentally for CaOH, and in this study for CaCO3 using electronic structure and statistical rate theory. Most of the neutral Ca is therefore locked in these reservoirs, enabling rapid loss through polymerization into meteoric smoke particles, and this explains the extreme depletion of Ca.
  • Item
    Mesospheric temperature soundings with the new, daylight-capable IAP RMR lidar
    (München : European Geopyhsical Union, 2016) Gerding, Michael; Kopp, Maren; Höffner, Josef; Baumgarten, Kathrin; Lübken, Franz-Josef
    Temperature measurements by lidar are an important tool for the understanding of the mean state of the atmosphere as well as the propagation of gravity waves and thermal tides. Though, mesospheric lidar soundings are often limited to nighttime conditions (e.g., solar zenith angle  >  96°) due to the low signal-to-noise ratio during the day. By this, examination of long-period gravity waves and tides is inhibited, as well as soundings in summer at polar latitudes. We developed a new daylight-capable Rayleigh–Mie–Raman (RMR) lidar at our site in Kühlungsborn, Germany (54° N, 12° E), that is in routine operation since 2010 for temperature soundings up to 90 km or  ∼  75 km (night or day) and soundings of noctilucent clouds. Here we describe the setup of the system with special emphasis on the daylight suppression methods like spatial and spectral filtering. The small bandwidth of the Fabry–Pérot etalons for spectral filtering of the received signal induces an altitude-dependent transmission of the detector. As a result, the signal is no longer proportional to the air density and the hydrostatic integration of the profile results in systematic temperature errors of up to 4 K. We demonstrate a correction method and the validity of correction by comparison with data obtained by our co-located, nighttime-only RMR lidar where no etalon is installed. As a further example a time series of temperature profiles between 20 and 80 km is presented for day and night of 9–10 March 2014. Together with the other data of March 2014 these profiles are used to calculate tidal amplitudes. It is found that tidal amplitudes vary between ∼  1 and 5 K depending on altitude.
  • Item
    Gravity waves excited during a minor sudden stratospheric warming
    (Katlenburg-Lindau : EGU, 2018-9-7) Dörnbrack, Andreas; Gisinger, Sonja; Kaifler, Natalie; Portele, Tanja Christina; Bramberger, Martina; Rapp, Markus; Gerding, Michael; Söder, Jens; Žagar, Nedjeljka; Jelić, Damjan
    An exceptionally deep upper-air sounding launched from Kiruna airport (67.82∘ N, 20.33∘ E) on 30 January 2016 stimulated the current investigation of internal gravity waves excited during a minor sudden stratospheric warming (SSW) in the Arctic winter 2015/16. The analysis of the radiosonde profile revealed large kinetic and potential energies in the upper stratosphere without any simultaneous enhancement of upper tropospheric and lower stratospheric values. Upward-propagating inertia-gravity waves in the upper stratosphere and downward-propagating modes in the lower stratosphere indicated a region of gravity wave generation in the stratosphere. Two-dimensional wavelet analysis was applied to vertical time series of temperature fluctuations in order to determine the vertical propagation direction of the stratospheric gravity waves in 1-hourly high-resolution meteorological analyses and short-term forecasts. The separation of upward- and downward-propagating waves provided further evidence for a stratospheric source of gravity waves. The scale-dependent decomposition of the flow into a balanced component and inertia-gravity waves showed that coherent wave packets preferentially occurred at the inner edge of the Arctic polar vortex where a sub-vortex formed during the minor SSW.
  • Item
    Mesospheric gravity wave activity estimated via airglow imagery, multistatic meteor radar, and SABER data taken during the SIMONe–2018 campaign
    (Katlenburg-Lindau : European Geosciences Union, 2021) Vargas, Fabio; Chau, Jorge L.; Charuvil Asokan, Harikrishnan; Gerding, Michael
    We describe in this study the analysis of small and large horizontal-scale gravity waves from datasets composed of images from multiple mesospheric airglow emissions as well as multistatic specular meteor radar (MSMR) winds collected in early November 2018, during the SIMONe-2018 (Spread-spectrum Interferometric Multi-static meteor radar Observing Network) campaign. These ground-based measurements are supported by temperature and neutral density profiles from TIMED/SABER (Thermosphere, Ionosphere, Mesosphere Energetics and Dynamics/Sounding of the Atmosphere using Broadband Emission Radiometry) satellite in orbits near Kühlungsborn, northern Germany (54.1 N, 11.8 E). The scientific goals here include the characterization of gravity waves and their interaction with the mean flow in the mesosphere and lower thermosphere and their relationship to dynamical conditions in the lower and upper atmosphere. We have obtained intrinsic parameters of small- and large-scale gravity waves and characterized their impact in the mesosphere via momentum flux (FM) and momentum flux divergence (FD) estimations. We have verified that a small percentage of the detected wave events is responsible for most of FM measured during the campaign from oscillations seen in the airglow brightness and MSMR winds taken over 45 h during four nights of clear-sky observations. From the analysis of small-scale gravity waves (λh < 725 km) seen in airglow images, we have found FM ranging from 0.04-24.74 m2 s-2 (1.62 ± 2.70 m2 s-2 on average). However, small-scale waves with FM > 3 m2 s-2 (11 % of the events) transport 50 % of the total measured FM. Likewise, wave events of FM > 10 m2 s-2 (2 % of the events) transport 20 % of the total. The examination of large-scale waves (λh > 725 km) seen simultaneously in airglow keograms and MSMR winds revealed amplitudes > 35 %, which translates into FM Combining double low line 21.2-29.6 m2 s-2. In terms of gravity-wave-mean-flow interactions, these large FM waves could cause decelerations of FD Combining double low line 22-41 m s-1 d-1 (small-scale waves) and FD Combining double low line 38-43 m s-1 d-1 (large-scale waves) if breaking or dissipating within short distances in the mesosphere and lower thermosphere region. © 2021 Fabio Vargas et al.
  • Item
    The Meteoric Ni Layer in the Upper Atmosphere
    (Hoboken, NJ : Wiley, 2020) Daly, Shane M.; Feng, Wuhu; Mangan, Thomas P.; Gerding, Michael; Plane, John M.C.
    The first global atmospheric model of Ni (WACCM-Ni) has been developed to understand recent observations of the mesospheric Ni layer by ground-based resonance lidars. The three components of the model are: the Whole Atmospheric Community Climate Model (WACCM6); a meteoric input function derived by coupling an astronomical model of dust sources in the solar system with a chemical meteoric ablation model; and a comprehensive set of neutral, ion-molecule, and photochemical reactions pertinent to the chemistry of Ni in the upper atmosphere. In order to achieve closure on the chemistry, the reaction kinetics of three important reactions were first studied using a fast flow tube with pulsed laser ablation of a Ni target, yielding k(NiO + O) = (4.6 ± 1.4) × 10−11, k(NiO + CO) = (3.0 ± 0.5) × 10−11, and k(NiO2 + O) = (2.5 ± 1.2) × 10−11 cm3 molecule−1 s−1 at 294 K. The photodissociation rate of NiOH was computed to be J(NiOH) = 0.02 s−1. WACCM-Ni simulates satisfactorily the observed neutral Ni layer peak height and width, and Ni+ measurements from rocket-borne mass spectrometry. The Ni layer is predicted to have a similar seasonal and latitudinal variation as the Fe layer, and its unusually broad bottom-side compared with Fe is caused by the relatively fast NiO + CO reaction. The quantum yield for photon emission from the Ni + O3 reaction, observed in the nightglow, is estimated to be between 6% and 40%. ©2020. The Authors.
  • Item
    Global perturbation of stratospheric water and aerosol burden by Hunga eruption
    (London : Springer Nature, 2022) Khaykin, Sergey; Podglajen, Aurelien; Ploeger, Felix; Grooß, Jens-Uwe; Tence, Florent; Bekki, Slimane; Khlopenkov, Konstantin; Bedka, Kristopher; Rieger, Landon; Baron, Alexandre; Godin-Beekmann, Sophie; Legras, Bernard; Sellitto, Pasquale; Sakai, Tetsu; Barnes, John; Uchino, Osamu; Morino, Isamu; Nagai, Tomohiro; Wing, Robin; Baumgarten, Gerd; Gerding, Michael; Duflot, Valentin; Payen, Guillaume; Jumelet, Julien; Querel, Richard; Liley, Ben; Bourassa, Adam; Clouser, Benjamin; Feofilov, Artem; Hauchecorne, Alain; Ravetta, François
    The eruption of the submarine Hunga volcano in January 2022 was associated with a powerful blast that injected volcanic material to altitudes up to 58 km. From a combination of various types of satellite and ground-based observations supported by transport modeling, we show evidence for an unprecedented increase in the global stratospheric water mass by 13% relative to climatological levels, and a 5-fold increase of stratospheric aerosol load, the highest in the last three decades. Owing to the extreme injection altitude, the volcanic plume circumnavigated the Earth in only 1 week and dispersed nearly pole-to-pole in three months. The unique nature and magnitude of the global stratospheric perturbation by the Hunga eruption ranks it among the most remarkable climatic events in the modern observation era, with a range of potential long-lasting repercussions for stratospheric composition and climate.
  • Item
    Temporal variability of tidal and gravity waves during a record long 10-day continuous lidar sounding
    (München : European Geopyhsical Union, 2018) Baumgarten, Kathrin; Gerding, Michael; Baumgarten, Gerd; Lübken, Franz-Josef
    Gravity waves (GWs) as well as solar tides are a key driving mechanism for the circulation in the Earth's atmosphere. The propagation of gravity waves is strongly affected by tidal waves as they modulate the mean background wind field and vice versa, which is not yet fully understood and not adequately implemented in many circulation models. The daylight-capable Rayleigh–Mie–Raman (RMR) lidar at Kühlungsborn (54°N, 12°E) typically provides temperature data to investigate both wave phenomena during one full day or several consecutive days in the middle atmosphere between 30 and 75km altitude. Outstanding weather conditions in May 2016 allowed for an unprecedented 10-day continuous lidar measurement, which shows a large variability of gravity waves and tides on timescales of days. Using a one-dimensional spectral filtering technique, gravity and tidal waves are separated according to their specific periods or vertical wavelengths, and their temporal evolution is studied. During the measurement period a strong 24h wave occurs only between 40 and 60km and vanishes after a few days. The disappearance is related to an enhancement of gravity waves with periods of 4–8h. Wind data provided by ECMWF are used to analyze the meteorological situation at our site. The local wind structure changes during the observation period, which leads to different propagation conditions for gravity waves in the last days of the measurement period and therefore a strong GW activity. The analysis indicates a further change in wave–wave interaction resulting in a minimum of the 24h tide. The observed variability of tides and gravity waves on timescales of a few days clearly demonstrates the importance of continuous measurements with high temporal and spatial resolution to detect interaction phenomena, which can help to improve parametrization schemes of GWs in general circulation models.
  • Item
    Case study of wave breaking with high-resolution turbulence measurements with LITOS and WRF simulations
    (München : European Geopyhsical Union, 2017) Schneider, Andreas; Wagner, Johannes; Söder, Jens; Gerding, Michael; Lübken, Franz-Josef
    Measurements of turbulent energy dissipation rates obtained from wind fluctuations observed with the balloon-borne instrument LITOS (Leibniz-Institute Turbulence Observations in the Stratosphere) are combined with simulations with the Weather Research and Forecasting (WRF) model to study the breakdown of waves into turbulence. One flight from Kiruna (68° N, 21° E) and two flights from Kühlungsborn (54° N, 12° E) are analysed. Dissipation rates are of the order of 0. 1 mW kg−1 (∼ 0.01 K d−1) in the troposphere and in the stratosphere below 15 km, increasing in distinct layers by about 2 orders of magnitude. For one flight covering the stratosphere up to ∼ 28 km, the measurement shows nearly no turbulence at all above 15 km. Another flight features a patch with highly increased dissipation directly below the tropopause, collocated with strong wind shear and wave filtering conditions. In general, small or even negative Richardson numbers are affirmed to be a sufficient condition for increased dissipation. Conversely, significant turbulence has also been observed in the lower stratosphere under stable conditions. Observed energy dissipation rates are related to wave patterns visible in the modelled vertical winds. In particular, the drop in turbulent fraction at 15 km mentioned above coincides with a drop in amplitude in the wave patterns visible in the WRF. This indicates wave saturation being visible in the LITOS turbulence data.
  • Item
    On the upper tropospheric formation and occurrence of high and thin cirrus clouds during anticyclonic poleward Rossby wave breaking events
    (Milton Park : Taylor & Francis, 2010) Eixmann, Ronald; Peters, Dieter H.W.; Zülicke, Christoph; Gerding, Michael; Dörnbrack, Andreas
    Ground-based lidar measurements and balloon soundings were employed to examine the dynamical link between anticyclonic Rossby wave breaking and cirrus clouds from 13 to 15 February 2006. For this event, an air mass with low Ertel’s potential vorticity appeared over Central Europe. In the tropopause region, this air mass was accompanied with both an area of extreme cold temperatures placed northeastward, and an area of high specific humidity, located southwestward. ECMWF analyses reveal a strong adiabatic northeastward and upward transport of water vapour within the warm conveyor belt on the western side of the ridge over Mecklenburg, Northern Germany. The backscatter lidar at K¨uhlungsborn (54.1◦N, 11.8◦E) clearly identified cirrus clouds at between 9 and 11.4 km height. In the tropopause region high-vertical resolution radiosoundings showed layers of subsaturated water vapour over ice but with a relative humidity over ice >80%. Over Northern Germany radiosondes indicated anticyclonically rotating winds in agreement with backward trajectories of ECMWF analyses in the upper troposphere, which were accompanied by a relatively strong increase of the tropopause height on 14 February. Based on ECMWF data the strong link between the large-scale structure, updraft and ice water content was shown.