Search Results

Now showing 1 - 10 of 14
Loading...
Thumbnail Image
Item

How evaluation of global hydrological models can help to improve credibility of river discharge projections under climate change

2020, Krysanova, Valentina, Zaherpour, Jamal, Didovets, Iulii, Gosling, Simon N., Gerten, Dieter, Hanasaki, Naota, Müller Schmied, Hannes, Pokhrel, Yadu, Satoh, Yusuke, Tang, Qiuhong, Wada, Yoshihide

Importance of evaluation of global hydrological models (gHMs) before doing climate impact assessment was underlined in several studies. The main objective of this study is to evaluate the performance of six gHMs in simulating observed discharge for a set of 57 large catchments applying common metrics with thresholds for the monthly and seasonal dynamics and summarize them estimating an aggregated index of model performance for each model in each basin. One model showed a good performance, and other five showed a weak or poor performance in most of the basins. In 15 catchments, evaluation results of all models were poor. The model evaluation was supplemented by climate impact assessment for a subset of 12 representative catchments using (1) usual ensemble mean approach and (2) weighted mean approach based on model performance, and the outcomes were compared. The comparison of impacts in terms of mean monthly and mean annual discharges using two approaches has shown that in four basins, differences were negligible or small, and in eight catchments, differences in mean monthly, mean annual discharge or both were moderate to large. The spreads were notably decreased in most cases when the second method was applied. It can be concluded that for improving credibility of projections, the model evaluation and application of the weighted mean approach could be recommended, especially if the mean monthly (seasonal) impacts are of interest, whereas the ensemble mean approach could be applied for projecting the mean annual changes. The calibration of gHMs could improve their performance and, consequently, the credibility of projections. © 2020, The Author(s).

Loading...
Thumbnail Image
Item

The limits to global-warming mitigation by terrestrial carbon removal

2017, Boysen, Lena R., Lucht, Wolfgang, Gerten, Dieter, Heck, Vera, Lenton, Timothy M., Schellnhuber, Hans Joachim

Massive near‐term greenhouse gas emissions reduction is a precondition for staying “well below 2°C” global warming as envisaged by the Paris Agreement. Furthermore, extensive terrestrial carbon dioxide removal (tCDR) through managed biomass growth and subsequent carbon capture and storage is required to avoid temperature “overshoot” in most pertinent scenarios. Here, we address two major issues: First, we calculate the extent of tCDR required to “repair” delayed or insufficient emissions reduction policies unable to prevent global mean temperature rise of 2.5°C or even 4.5°C above pre‐industrial level. Our results show that those tCDR measures are unable to counteract “business‐as‐usual” emissions without eliminating virtually all natural ecosystems. Even if considerable (Representative Concentration Pathway 4.5 [RCP4.5]) emissions reductions are assumed, tCDR with 50% storage efficiency requires >1.1 Gha of the most productive agricultural areas or the elimination of >50% of natural forests. In addition, >100 MtN/yr fertilizers would be needed to remove the roughly 320 GtC foreseen in these scenarios. Such interventions would severely compromise food production and/or biosphere functioning. Second, we reanalyze the requirements for achieving the 160–190 GtC tCDR that would complement strong mitigation action (RCP2.6) in order to avoid 2°C overshoot anytime. We find that a combination of high irrigation water input and/or more efficient conversion to stored carbon is necessary. In the face of severe trade‐offs with society and the biosphere, we conclude that large‐scale tCDR is not a viable alternative to aggressive emissions reduction. However, we argue that tCDR might serve as a valuable “supporting actor” for strong mitigation if sustainable schemes are established immediately.

Loading...
Thumbnail Image
Item

Historical and future changes in global flood magnitude - evidence from a model-observation investigation

2020, Do, Hong Xuan, Zhao, Fang, Westra, Seth, Leonard, Michael, Gudmundsson, Lukas, Boulange, Julien Eric Stanislas, Chang, Jinfeng, Ciais, Philippe, Gerten, Dieter, Gosling, Simon N., Müller Schmied, Hannes, Stacke, Tobias, Telteu, Camelia-Eliza, Wada, Yoshihide

To improve the understanding of trends in extreme flows related to flood events at the global scale, historical and future changes of annual maxima of 7 d streamflow are investigated, using a comprehensive streamflow archive and six global hydrological models. The models' capacity to characterise trends in annual maxima of 7 d streamflow at the continental and global scale is evaluated across 3666 river gauge locations over the period from 1971 to 2005, focusing on four aspects of trends: (i) mean, (ii) standard deviation, (iii) percentage of locations showing significant trends and (iv) spatial pattern. Compared to observed trends, simulated trends driven by observed climate forcing generally have a higher mean, lower spread and a similar percentage of locations showing significant trends. Models show a low to moderate capacity to simulate spatial patterns of historical trends, with approximately only from 12 % to 25 % of the spatial variance of observed trends across all gauge stations accounted for by the simulations. Interestingly, there are statistically significant differences between trends simulated by global hydrological models (GHMs) forced with observational climate and by those forced by bias-corrected climate model output during the historical period, suggesting the important role of the stochastic natural (decadal, inter-annual) climate variability. Significant differences were found in simulated flood trends when averaged only at gauged locations compared to those averaged across all simulated grid cells, highlighting the potential for bias toward well-observed regions in our understanding of changes in floods. Future climate projections (simulated under the RCP2.6 and RCP6.0 greenhouse gas concentration scenarios) suggest a potentially high level of change in individual regions, with up to 35 % of cells showing a statistically significant trend (increase or decrease; at 10 % significance level) and greater changes indicated for the higher concentration pathway. Importantly, the observed streamflow database under-samples the percentage of locations consistently projected with increased flood hazards under the RCP6.0 greenhouse gas concentration scenario by more than an order of magnitude (0.9 % compared to 11.7 %). This finding indicates a highly uncertain future for both flood-prone communities and decision makers in the context of climate change. © Author(s) 2020.

Loading...
Thumbnail Image
Item

Poor correlation between large-scale environmental flow violations and freshwater biodiversity: implications for water resource management and the freshwater planetary boundary

2022, Mohan, Chinchu, Gleeson, Tom, Famiglietti, James S., Virkki, Vili, Kummu, Matti, Porkka, Miina, Wang-Erlandsson, Lan, Huggins, Xander, Gerten, Dieter, Jähnig, Sonja C.

The freshwater ecosystems around the world are degrading, such that maintaining environmental flow Environmental flow (EF): "The quantity, timing, and quality of water flows required to sustain freshwater and estuarine ecosystems and the human livelihoods and well-being that depend on these ecosystems."- Arthington et al. (2018). (EF) in river networks is critical to their preservation. The relationship between streamflow alterations (subsequent EF violationsEF violations are deviations in streamflow beyond the upper and lower boundaries of environmental flow envelopes (EFEs). The EFEs establish an envelope for acceptable EF deviations based on pre-industrial (1801-1860) stream discharge (see Sect. 2.2 for more details)) and the freshwater biodiversity response is well established at the scale of stream reaches or small basins (g 1/4<100g km2). However, it is unclear if this relationship is robust at larger scales, even though there are large-scale initiatives to legalize the EF requirement. Moreover, EFs have been used in assessing a planetary boundaryPlanetary boundary: planetary boundary defines biogeophysical planetary-scale boundaries for Earth system processes that, if violated, can irretrievably impair the Holocene-like stability of the Earth system. for freshwater. Therefore, this study intends to conduct an exploratory evaluation of the relationship between EF violation and freshwater biodiversity at globally aggregated scales and for freshwater ecoregions. Four EF violation indices (severity, frequency, probability of shifting to a violated state, and probability of staying violated) and seven independent freshwater biodiversity indicators (calculated from observed biota data) were used for correlation analysis. No statistically significant negative relationship between EF violation and freshwater biodiversity was found at global or ecoregion scales. These findings imply the need for a holistic bio-geo-hydro-physical approach in determining the environmental flows. While our results thus suggest that streamflow and EF may not be the only determinant of freshwater biodiversity at large scales, they do not preclude the existence of relationships at smaller scales or with more holistic EF methods (e.g., including water temperature, water quality, intermittency, connectivity, etc.) or with other biodiversity data or metrics.

Loading...
Thumbnail Image
Item

Freshwater resources under success and failure of the Paris climate agreement

2019, Heinke, Jens, Müller, Christoph, Lannerstad, Mats, Gerten, Dieter, Lucht, Wolfgang

Population growth will in many regions increase the pressure on water resources and likely increase the number of people affected by water scarcity. In parallel, global warming causes hydrological changes which will affect freshwater supply for human use in many regions. This study estimates the exposure of future population to severe hydrological changes relevant from a freshwater resource perspective at different levels of global mean temperature rise above pre-industrial level (ΔTglob). The analysis is complemented by an assessment of water scarcity that would occur without additional climate change due to population change alone; this is done to identify the population groups that are faced with particularly high adaptation challenges. The results are analysed in the context of success and failure of implementing the Paris Agreement to evaluate how climate mitigation can reduce the future number of people exposed to severe hydrological change. The results show that without climate mitigation efforts, in the year 2100 about 4.9 billion people in the SSP2 population scenario would more likely than not be exposed to severe hydrological change, and about 2.1 billion of them would be faced with particularly high adaptation challenges due to already prevailing water scarcity. Limiting warming to 2 °C by a successful implementation of the Paris Agreement would strongly reduce these numbers to 615 million and 290 million, respectively. At the regional scale, substantial water-related risks remain at 2 °C, with more than 12% of the population exposed to severe hydrological change and high adaptation challenges in Latin America and the Middle East and north Africa region. Constraining δTglob to 1.5 °C would limit this share to about 5% in these regions. ©2019 Author(s).

Loading...
Thumbnail Image
Item

The biosphere under potential Paris outcomes

2018, Ostberg, Sebastian, Boysen, Lena R., Schaphoff, Sibyll, Lucht, Wolfgang, Gerten, Dieter

Rapid economic and population growth over the last centuries have started to push the Earth out of its Holocene state into the Anthropocene. In this new era, ecosystems across the globe face mounting dual pressure from human land use change (LUC) and climate change (CC). With the Paris Agreement, the international community has committed to holding global warming below 2°C above preindustrial levels, yet current pledges by countries to reduce greenhouse gas emissions appear insufficient to achieve that goal. At the same time, the sustainable development goals strive to reduce inequalities between countries and provide sufficient food, feed, and clean energy to a growing world population likely to reach more than 9 billion by 2050. Here, we present a macro‐scale analysis of the projected impacts of both CC and LUC on the terrestrial biosphere over the 21st century using the Representative Concentration Pathways (RCPs) to illustrate possible trajectories following the Paris Agreement. We find that CC may cause major impacts in landscapes covering between 16% and 65% of the global ice‐free land surface by the end of the century, depending on the success or failure of achieving the Paris goal. Accounting for LUC impacts in addition, this number increases to 38%–80%. Thus, CC will likely replace LUC as the major driver of ecosystem change unless global warming can be limited to well below 2°C. We also find a substantial risk that impacts of agricultural expansion may offset some of the benefits of ambitious climate protection for ecosystems.

Loading...
Thumbnail Image
Item

How the performance of hydrological models relates to credibility of projections under climate change

2018, Krysanova, Valentina, Donnelly, Chantal, Gelfan, Alexander, Gerten, Dieter, Arheimer, Berit, Hattermann, Fred, Kundzewicz, Zbigniew W.

Two approaches can be distinguished in studies of climate change impacts on water resources when accounting for issues related to impact model performance: (1) using a multi-model ensemble disregarding model performance, and (2) using models after their evaluation and considering model performance. We discuss the implications of both approaches in terms of credibility of simulated hydrological indicators for climate change adaptation. For that, we discuss and confirm the hypothesis that a good performance of hydrological models in the historical period increases confidence in projected impacts under climate change, and decreases uncertainty of projections related to hydrological models. Based on this, we find the second approach more trustworthy and recommend using it for impact assessment, especially if results are intended to support adaptation strategies. Guidelines for evaluation of global- and basin-scale models in the historical period, as well as criteria for model rejection from an ensemble as an outlier, are also suggested.

Loading...
Thumbnail Image
Item

Projecting Exposure to Extreme Climate Impact Events Across Six Event Categories and Three Spatial Scales

2020, Lange, Stefan, Volkholz, Jan, Geiger, Tobias, Zhao, Fang, Vega, Iliusi, Veldkamp, Ted, Reyer, Christopher P.O., Warszawski, Lila, Huber, Veronika, Jägermeyr, Jonas, Schewe, Jacob, Bresch, David N., Büchner, Matthias, Chang, Jinfeng, Ciais, Philippe, Dury, Marie, Emanuel, Kerry, Folberth, Christian, Gerten, Dieter, Gosling, Simon N., Grillakis, Manolis, Hanasaki, Naota, Henrot, Alexandra-Jane, Hickler, Thomas, Honda, Yasushi, Ito, Akihiko, Khabarov, Nikolay, Koutroulis, Aristeidis, Liu, Wenfeng, Müller, Christoph, Nishina, Kazuya, Ostberg, Sebastian, Müller Schmied, Hannes, Seneviratne, Sonia I., Stacke, Tobias, Steinkamp, Jörg, Thiery, Wim, Wada, Yoshihide, Willner, Sven, Yang, Hong, Yoshikawa, Minoru, Yue, Chao, Frieler, Katja

The extent and impact of climate-related extreme events depend on the underlying meteorological, hydrological, or climatological drivers as well as on human factors such as land use or population density. Here we quantify the pure effect of historical and future climate change on the exposure of land and population to extreme climate impact events using an unprecedentedly large ensemble of harmonized climate impact simulations from the Inter-Sectoral Impact Model Intercomparison Project phase 2b. Our results indicate that global warming has already more than doubled both the global land area and the global population annually exposed to all six categories of extreme events considered: river floods, tropical cyclones, crop failure, wildfires, droughts, and heatwaves. Global warming of 2°C relative to preindustrial conditions is projected to lead to a more than fivefold increase in cross-category aggregate exposure globally. Changes in exposure are unevenly distributed, with tropical and subtropical regions facing larger increases than higher latitudes. The largest increases in overall exposure are projected for the population of South Asia. ©2020. The Authors.

Loading...
Thumbnail Image
Item

Towards a comprehensive climate impacts assessment of solar geoengineering

2016, Irvine, Peter J., Kravitz, Ben, Lawrence, Mark G., Gerten, Dieter, Caminade, Cyril, Gosling, Simon N., Hendy, Erica J., Kassie, Belay T., Kissling, W. Daniel, Muri, Helene, Oschlies, Andreas, Smith, Steven J.

Despite a growing literature on the climate response to solar geoengineering—proposals to cool the planet by increasing the planetary albedo—there has been little published on the impacts of solar geoengineering on natural and human systems such as agriculture, health, water resources, and ecosystems. An understanding of the impacts of different scenarios of solar geoengineering deployment will be crucial for informing decisions on whether and how to deploy it. Here we review the current state of knowledge about impacts of a solar‐geoengineered climate and identify the major research gaps. We suggest that a thorough assessment of the climate impacts of a range of scenarios of solar geoengineering deployment is needed and can be built upon existing frameworks. However, solar geoengineering poses a novel challenge for climate impacts research as the manner of deployment could be tailored to pursue different objectives making possible a wide range of climate outcomes. We present a number of ideas for approaches to extend the survey of climate impacts beyond standard scenarios of solar geoengineering deployment to address this challenge. Reducing the impacts of climate change is the fundamental motivator for emissions reductions and for considering whether and how to deploy solar geoengineering. This means that the active engagement of the climate impacts research community will be important for improving the overall understanding of the opportunities, challenges, and risks presented by solar geoengineering.

Loading...
Thumbnail Image
Item

Global scenarios of irrigation water abstractions for bioenergy production: a systematic review

2021, Stenzel, Fabian, Gerten, Dieter, Hanasaki, Naota

Many scenarios of future climate evolution and its anthropogenic drivers include considerable amounts of bioenergy as a fuel source, as a negative emission technology, and for providing electricity. The associated freshwater abstractions for irrigation of dedicated biomass plantations might be substantial and therefore potentially increase water limitation and stress in affected regions; however, assumptions and quantities of water use provided in the literature vary strongly. This paper reviews existing global assessments of freshwater abstractions for bioenergy production and puts these estimates into the context of scenarios of other water-use sectors. We scanned the available literature and (out of 430 initial hits) found 16 publications (some of which include several bioenergy-water-use scenarios) with reported values on global irrigation water abstractions for biomass plantations, suggesting water withdrawals in the range of 128.4 to 9000 km3 yr−1, which would come on top of (or compete with) agricultural, industrial, and domestic water withdrawals. To provide an understanding of the origins of this large range, we present the diverse underlying assumptions, discuss major study differences, and calculate an inverse water-use efficiency (iwue), which facilitates comparison of the required freshwater amounts per produced biomass harvest. We conclude that due to the potentially high water demands and the tradeoffs that might go along with them, bioenergy should be an integral part of global assessments of freshwater demand and use. For interpreting and comparing reported estimates of possible future bioenergy water abstractions, full disclosure of parameters and assumptions is crucial. A minimum set should include the complete water balances of bioenergy production systems (including partitioning of blue and green water), bioenergy crop species and associated water-use efficiencies, rainfed and irrigated bioenergy plantation locations (including total area and meteorological conditions), and total biomass harvest amounts. In the future, a model intercomparison project with standardized parameters and scenarios would be helpful.