Search Results

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Item

Energy estimates for continuous and discretized electro-reaction-diffusion systems

2007, Glitzky, Annegret, Gärtner, Klaus

We consider electro-reaction-diffusion systems consisting of continuity equations for a finite number of species coupled with a Poisson equation. We take into account heterostructures, anisotropic materials and rather general statistic relations. We investigate thermodynamic equilibria and prove for solutions to the evolution system the monotone and exponential decay of the free energy to its equilibrium value. Here the essential idea is an estimate of the free energy by the dissipation rate which is proved indirectly. The same properties are shown for an implicit time discretized version of the problem. Moreover, we provide a space discretized scheme for the electro-reaction-diffusion system which is dissipative (the free energy decays monotonously). On a fixed grid we use for each species different Voronoi boxes which are defined with respect to the anisotropy matrix occurring in the flux term of this species.

Loading...
Thumbnail Image
Item

Existence of bounded steady state solutions to spin-polarized drift-diffusion systems

2008, Glitzky, Annegret, Gärtner, Klaus

We study a stationary spin-polarized drift-diffusion model for semiconductor spintronic devices. This coupled system of continuity equations and a Poisson equation with mixed boundary conditions in all equations has to be considered in heterostructures. In 3D we prove the existence and boundedness of steady states. If the Dirichlet conditions are compatible or nearly compatible with thermodynamic equilibrium the solution is unique. The same properties are obtained for a space discretized version of the problem: Using a Scharfetter-Gummel scheme on 3D boundary conforming Delaunay grids we show existence, boundedness and, for small applied voltages, the uniqueness of the discrete solution.