Search Results

Now showing 1 - 10 of 11
  • Item
    Homogeneous and heterogeneous ice nucleation at LACIS: Operating principle and theoretical studies
    (München : European Geopyhsical Union, 2011) Hartmann, S.; Niedermeier, D.; Voigtländer, J.; Clauss, T.; Shaw, R.A.; Wex, H.; Kiselev, A.; Stratmann, F.
    At the Leipzig Aerosol Cloud Interaction Simulator (LACIS) experiments investigating homogeneous and heterogeneous nucleation of ice (particularly immersion freezing in the latter case) have been carried out. Here both the physical LACIS setup and the numerical model developed to design experiments at LACIS and interpret their results are presented in detail. Combining results from the numerical model with experimental data, it was found that for the experimental parameter space considered, classical homogeneous ice nucleation theory is able to predict the freezing behavior of highly diluted ammonium sulfate solution droplets, while classical heterogeneous ice nucleation theory, together with the assumption of a constant contact angle, fails to predict the immersion freezing behavior of surrogate mineral dust particles (Arizona Test Dust, ATD). The main reason for this failure is the compared to experimental data apparently overly strong temperature dependence of the nucleation rate coefficient. Assuming, in the numerical model, Classical Nucleation Theory (CNT) for homogeneous ice nucleation and a CNT-based parameterization for the nucleation rate coefficient in the immersion freezing mode, recently published by our group, it was found that even for a relatively effective ice nucleating agent such as pure ATD, there is a temperature range where homogeneous ice nucleation is dominant. The main explanation is the apparently different temperature dependencies of the two freezing mechanisms. Finally, reviewing the assumptions made during the derivation of the CNT-based parameterization for immersion freezing, it was found that the assumption of constant temperature during ice nucleation and the chosen ice nucleation time were justified, underlining the applicability of the method to determine the fitting coefficients in the parameterization equation.
  • Item
    Surface modification of mineral dust particles by sulphuric acid processing: Implications for ice nucleation abilities
    (München : European Geopyhsical Union, 2011) Reitz, P.; Spindler, C.; Mentel, T.F.; Poulain, L.; Wex, H.; Mildenberger, K.; Niedermeier, D.; Hartmann, S.; Clauss, T.; Stratmann, F.; Sullivan, R.C.; DeMott, P.J.; Petters, M.D.; Sierau, B.; Schneider, J.
    The ability of coated mineral dust particles to act as ice nuclei (IN) was investigated at LACIS (Leipzig Aerosol Cloud Interaction Simulator) during the FROST1- and FROST2-campaigns (Freezing of dust). Sulphuric acid was condensed on the particles which afterwards were optionally humidified, treated with ammonia vapour and/or heat. By means of aerosol mass spectrometry we found evidence that processing of mineral dust particles with sulphuric acid leads to surface modifications of the particles. These surface modifications are most likely responsible for the observed reduction of the IN activation of the particles. The observed particle mass spectra suggest that different treatments lead to different chemical reactions on the particle surface. Possible chemical reaction pathways and products are suggested and the implications on the IN efficiency of the treated dust particles are discussed.
  • Item
    Heterogeneous ice nucleation: Exploring the transition from stochastic to singular freezing behavior
    (München : European Geopyhsical Union, 2011) Niedermeier, D.; Shaw, R.A.; Hartmann, S.; Wex, H.; Clauss, T.; Voigtländer, J.; Stratmann, F.
    Heterogeneous ice nucleation, a primary pathway for ice formation in the atmosphere, has been described alternately as being stochastic, in direct analogy with homogeneous nucleation, or singular, with ice nuclei initiating freezing at deterministic temperatures. We present an idealized, conceptual model to explore the transition between stochastic and singular ice nucleation. This "soccer ball" model treats particles as being covered with surface sites (patches of finite area) characterized by different nucleation barriers, but with each surface site following the stochastic nature of ice embryo formation. The model provides a phenomenological explanation for seemingly contradictory experimental results obtained in our research groups. Even with ice nucleation treated fundamentally as a stochastic process this process can be masked by the heterogeneity of surface properties, as might be typical for realistic atmospheric particle populations. Full evaluation of the model findings will require experiments with well characterized ice nucleating particles and the ability to vary both temperature and waiting time for freezing.
  • Item
    Experimental study of the role of physicochemical surface processing on the IN ability of mineral dust particles
    (München : European Geopyhsical Union, 2011) Niedermeier, D.; Hartmann, S.; Clauss, T.; Wex, H.; Kiselev, A.; Sullivan, R.C.; DeMott, P.J.; Petters, M.D.; Reitz, P.; Schneider, J.; Mikhailov, E.; Sierau, B.; Stetzer, O.; Reimann, B.; Bundke, U.; Shaw, R.A.; Buchholz, A.; Mentel, T.F.; Stratmann, F.
    During the measurement campaign FROST 2 (FReezing Of duST 2), the Leipzig Aerosol Cloud Interaction Simulator (LACIS) was used to investigate the influence of various surface modifications on the ice nucleating ability of Arizona Test Dust (ATD) particles in the immersion freezing mode. The dust particles were exposed to sulfuric acid vapor, to water vapor with and without the addition of ammonia gas, and heat using a thermodenuder operating at 250 °C. Size selected, quasi monodisperse particles with a mobility diameter of 300 nm were fed into LACIS and droplets grew on these particles such that each droplet contained a single particle. Temperature dependent frozen fractions of these droplets were determined in a temperature range between −40 °C ≤T≤−28 °C. The pure ATD particles nucleated ice over a broad temperature range with their freezing behavior being separated into two freezing branches characterized through different slopes in the frozen fraction vs. temperature curves. Coating the ATD particles with sulfuric acid resulted in the particles' IN potential significantly decreasing in the first freezing branch (T>−35 °C) and a slight increase in the second branch (T≤−35 °C). The addition of water vapor after the sulfuric acid coating caused the disappearance of the first freezing branch and a strong reduction of the IN ability in the second freezing branch. The presence of ammonia gas during water vapor exposure had a negligible effect on the particles' IN ability compared to the effect of water vapor. Heating in the thermodenuder led to a decreased IN ability of the sulfuric acid coated particles for both branches but the additional heat did not or only slightly change the IN ability of the pure ATD and the water vapor exposed sulfuric acid coated particles. In other words, the combination of both sulfuric acid and water vapor being present is a main cause for the ice active surface features of the ATD particles being destroyed. A possible explanation could be the chemical transformation of ice active metal silicates to metal sulfates. The strongly enhanced reaction between sulfuric acid and dust in the presence of water vapor and the resulting significant reductions in IN potential are of importance for atmospheric ice cloud formation. Our findings suggest that the IN concentration can decrease by up to one order of magnitude for the conditions investigated.
  • Item
    Heterogeneous freezing of droplets with immersed mineral dust particles – measurements and parameterization
    (München : European Geopyhsical Union, 2010) Niedermeier, D.; Hartmann, S.; Shaw, R.A.; Covert, D.; Mentel, T.F.; Schneider, J.; Mentel, T.F.; Poulain, L.; Reitz, P.; Spindler, C.; Clauss, T.; Kiselev, A.; Hallbauer, E.; Wex, H.; Mildenberger, K.; Stratmann, F.
    During the measurement campaign FROST (FReezing Of duST), LACIS (Leipzig Aerosol Cloud Interaction Simulator) was used to investigate the immersion freezing behavior of size selected, coated and uncoated Arizona Test Dust (ATD) particles with a mobility diameter of 300 nm. Particles were coated with succinic acid (C4H6O4), sulfuric acid (H2SO4) and ammonium sulfate ((NH4)2SO4). Ice fractions at mixed-phase cloud temperatures ranging from 233.15 K to 239.15 K (±0.60 K) were determined for all types of particles. In this temperature range, pure ATD particles and those coated with C4H6O4 or small amounts of H2SO4 were found to be the most efficient ice nuclei (IN). ATD particles coated with (NH4)2SO4 were the most inefficient IN. Since the supercooled droplets were highly diluted before freezing occurred, a freezing point suppression due to the soluble material on the particles (and therefore in the droplets) cannot explain this observation. Therefore, it is reasonable to assume that the coatings lead to particle surface alterations which cause the differences in the IN abilities. Two different theoretical approaches based on the stochastic and the singular hypotheses were applied to clarify and parameterize the freezing behavior of the particles investigated. Both approaches describe the experimentally determined results, yielding parameters that can subsequently be used to compare our results to those from other studies. However, we cannot clarify at the current state which of the two approaches correctly describes the investigated immersion freezing process. But both approaches confirm the assumption that the coatings lead to particle surface modifications lowering the nucleation efficiency. The stochastic approach interprets the reduction in nucleation rate from coating as primarily due to an increase in the thermodynamic barrier for ice formation (i.e., changes in interfacial free energies). The singular approach interprets the reduction as resulting from a reduced surface density of active sites.
  • Item
    Irreversible loss of ice nucleation active sites in mineral dust particles caused by sulphuric acid condensation
    (München : European Geopyhsical Union, 2010) Sullivan, R.C.; Petters, M.D.; DeMott, P.J.; Kreidenweis, S.M.; Wex, H.; Niedermeier, D.; Hartmann, S.; Clauss, T.; Stratmann, F.; Reitz, P.; Schneider, J.; Sierau, B.
    During the FROST-2 (FReezing Of duST) measurement campaign conducted at the Leipzig Aerosol Cloud Interaction Simulator (LACIS), we investigated changes in the ice nucleation properties of 300 nm Arizona Test Dust mineral particles following thermochemical processing by varying amounts and combinations of exposure to sulphuric acid vapour, ammonia gas, water vapour, and heat. The processed particles' heterogeneous ice nucleation properties were determined in both the water subsaturated and supersaturated humidity regimes at −30 °C and −25 °C using Colorado State University's continuous flow diffusion chamber. The amount of sulphuric acid coating material was estimated by an aerosol mass spectrometer and from CCN-derived hygroscopicity measurements. The condensation of sulphuric acid decreased the dust particles' ice nucleation ability in proportion to the amount of sulphuric acid added. Heating the coated particles in a thermodenuder at 250 °C – intended to evaporate the sulphuric acid coating – reduced their freezing ability even further. We attribute this behaviour to accelerated acid digestion of ice active surface sites by heat. Exposing sulphuric acid coated dust to ammonia gas produced particles with similarly poor freezing potential; however a portion of their ice nucleation ability could be restored after heating in the thermodenuder. In no case did any combination of thermochemical treatments increase the ice nucleation ability of the coated mineral dust particles compared to unprocessed dust. These first measurements of the effect of identical chemical processing of dust particles on their ice nucleation ability under both water subsaturated and mixed-phase supersaturated cloud conditions revealed that ice nucleation was more sensitive to all coating treatments in the water subsaturated regime. The results clearly indicate irreversible impairment of ice nucleation activity in both regimes after condensation of concentrated sulphuric acid. This implies that the sulphuric acid coating caused permanent chemical and/or physical modification of the ice active surface s
  • Item
    Immersion freezing of birch pollen washing water
    (München : European Geopyhsical Union, 2013) Augustin, S.; Wex, H.; Niedermeier, D.; Pummer, B.; Grothe, H.; Hartmann, S.; Tomsche, L.; Clauss, T.; Voigtländer, J.; Ignatius, K.; Stratmann, F.
    Birch pollen grains are known to be ice nucleating active biological particles. The ice nucleating activity has previously been tracked down to biological macromolecules that can be easily extracted from the pollen grains in water. In the present study, we investigated the immersion freezing behavior of these ice nucleating active (INA) macromolecules. Therefore we measured the frozen fractions of particles generated from birch pollen washing water as a function of temperature at the Leipzig Aerosol Cloud Interaction Simulator (LACIS). Two different birch pollen samples were considered, with one originating from Sweden and one from the Czech Republic. For the Czech and Swedish birch pollen samples, freezing was observed to start at −19 and −17 °C, respectively. The fraction of frozen droplets increased for both samples down to −24 °C. Further cooling did not increase the frozen fractions any more. Instead, a plateau formed at frozen fractions below 1. This fact could be used to determine the amount of INA macromolecules in the droplets examined here, which in turn allowed for the determination of nucleation rates for single INA macromolecules. The main differences between the Swedish birch pollen and the Czech birch pollen were obvious in the temperature range between −17 and −24 °C. In this range, a second plateau region could be seen for Swedish birch pollen. As we assume INA macromolecules to be the reason for the ice nucleation, we concluded that birch pollen is able to produce at least two different types of INA macromolecules. We were able to derive parameterizations for the heterogeneous nucleation rates for both INA macromolecule types, using two different methods: a simple exponential fit and the Soccer ball model. With these parameterization methods we were able to describe the ice nucleation behavior of single INA macromolecules from both the Czech and the Swedish birch pollen.
  • Item
    Application of linear polarized light for the discrimination of frozen and liquid droplets in ice nucleation experiments
    (München : European Geopyhsical Union, 2013) Clauss, T.; Kiselev, A.; Hartmann, S.; Augustin, S.; Pfeifer, S.; Niedermeier, D.; Wex, H.; Stratmann, F.
    We report on the development and test results of the new optical particle counter TOPS-Ice (Thermo-stabilized Optical Particle Spectrometer for the detection of Ice). The instrument uses measurements of the cross-polarized scattered light by single particles into the near-forward direction (42.5° ± 12.7°) to distinguish between spherical and non-spherical particles. This approach allows the differentiation between liquid water droplets (spherical) and ice particles (non-spherical) having similar volume-equivalent sizes and therefore can be used to determine the fraction of frozen droplets in a typical immersion freezing experiment. We show that the numerical simulation of the light scattered on non-spherical particles (spheroids in random orientation) considering the actual scattering geometry used in the instrument supports the validity of the approach, even though the cross-polarized component of the light scattered by spherical droplets does not vanish in this scattering angle. For the separation of the ice particle mode from the liquid droplet mode, we use the width of the pulse detected in the depolarization channel instead of the pulse height. Exploiting the intrinsic relationship between pulse height and pulse width for Gaussian pulses allows us to calculate the fraction of frozen droplets even if the liquid droplet mode dominates the particle ensemble. We present test results obtained with TOPS-Ice in the immersion freezing experiments at the laminar diffusion chamber LACIS (Leipzig Aerosol Cloud Interaction Simulator) and demonstrate the excellent agreement with the data obtained in similar experiments with a different optical instrument. Finally, the advantages of using the cross-polarized light measurements for the differentiation of liquid and frozen droplets in the realistic immersion freezing experiments are discussed.
  • Item
    Kaolinite particles as ice nuclei: Learning from the use of different kaolinite samples and different coatings
    (Göttingen : Copernicus, 2014) Wex, H.; Demott, P.J.; Tobo, Y.; Hartmann, S.; Rösch, M.; Clauss, T.; Tomsche, L.; Niedermeier, D.; Stratmann, F.
    Kaolinite particles from two different sources (Fluka and Clay Minerals Society (CMS)) were examined with respect to their ability to act as ice nuclei (IN). This was done in the water-subsaturated regime where often deposition ice nucleation is assumed to occur, and for water-supersaturated conditions, i.e., in the immersion freezing mode. Measurements were done using a flow tube (the Leipzig Aerosol Cloud Interaction Simulator, LACIS) and a continuous-flow diffusion chamber (CFDC). Pure and coated particles were used, with coating thicknesses of a few nanometers or less, where the coating consisted of levoglucosan, succinic acid or sulfuric acid. In general, it was found that the coatings strongly reduced deposition ice nucleation. Remaining ice formation in the water-subsaturated regime could be attributed to immersion freezing, with particles immersed in concentrated solutions formed by the coatings. In the immersion freezing mode, ice nucleation rate coefficients het from both instruments agreed well with each other, particularly when the residence times in the instruments were accounted for. Fluka kaolinite particles coated with either levoglucosan or succinic acid showed the same IN activity as pure Fluka kaolinite particles; i.e., it can be assumed that these two types of coating did not alter the ice-active surface chemically, and that the coatings were diluted enough in the droplets that were formed prior to the ice nucleation, so that freezing point depression was negligible. However, Fluka kaolinite particles, which were either coated with pure sulfuric acid or were first coated with the acid and then exposed to additional water vapor, both showed a reduced ability to nucleate ice compared to the pure particles. For the CMS kaolinite particles, the ability to nucleate ice in the immersion freezing mode was similar for all examined particles, i.e., for the pure ones and the ones with the different types of coating. Moreover, het derived for the CMS kaolinite particles was comparable to het derived for Fluka kaolinite particles coated with sulfuric acid. This is suggestive for the Fluka kaolinite possessing a type of ice-nucleating surface feature which is not present on the CMS kaolinite, and which can be destroyed by reaction with sulfuric acid. This might be potassium feldspar.
  • Item
    The fine-scale structure of the trade wind cumuli over Barbados – An introduction to the CARRIBA project
    (München : European Geopyhsical Union, 2013) Siebert, H.; Beals, M.; Bethke, J.; Bierwirth, E.; Conrath, T.; Dieckmann, K.; Ditas, F.; Ehrlich, A.; Farrell, D.; Hartmann, S.; Izaguirre, M.A.; Katzwinkel, J.; Nuijens, L.; Roberts, G.; Schäfer, M.; Shaw, R.A.; Schmeissner, T.; Serikov, I.; Stevens, B.; Stratmann, F.; Wehner, B.; Wendisch, M.; Werner, F.; Wex, H.
    The CARRIBA (Cloud, Aerosol, Radiation and tuRbulence in the trade wInd regime over BArbados) project, focused on high resolution and collocated measurements of thermodynamic, turbulent, microphysical, and radiative properties of trade wind cumuli over Barbados, is introduced. The project is based on two one-month field campaigns in November 2010 (climatic wet season) and April 2011 (climatic dry season). Observations are based on helicopter-borne and ground-based measurements in an area of 100 km2 off the coast of Barbados. CARRIBA is accompanied by long-term observations at the Barbados Cloud Observatory located at the East coast of Barbados since early in 2010 and which provides a longer-term context for the CARRIBA measurements. The deployed instrumentation and sampling strategy are presented together with a classification of the meteorological conditions. The two campaigns were influenced by different air masses advected from the Caribbean area, the Atlantic Ocean, and the African continent which led to distinct aerosol conditions. Pristine conditions with low aerosol particle number concentrations of ~100 cm3 were alternating with periods influenced by Saharan dust or aerosol from biomass burning resulting in comparably high number concentrations of ~ 500 cm3. The biomass burning aerosol was originating from both the Caribbean area and Africa. The shallow cumulus clouds responded to the different aerosol conditions with a wide range of mean droplet sizes and number concentrations. Two days with different aerosol and cloud microphysical properties but almost identical meteorological conditions have been analyzed in detail. The differences in the droplet number concentration and droplet sizes appear not to show any significant change for turbulent cloud mixing, but the relative roles of droplet inertia and sedimentation in initiating coalescence, as well as the cloud reflectivity, do change substantially.