Search Results

Now showing 1 - 5 of 5
  • Item
    Quasi‐10‐Day Wave and Semidiurnal Tide Nonlinear Interactions During the Southern Hemispheric SSW 2019 Observed in the Northern Hemispheric Mesosphere
    (Hoboken, NJ : Wiley, 2020) He, Maosheng; Chau, Jorge L.; Forbes, Jeffrey M.; Thorsen, Denise; Li, Guozhu; Siddiqui, Tarique Adnan; Yamazaki, Yosuke; Hocking, Wayne K.
    Mesospheric winds from three longitudinal sectors at 65°N and 54°N latitude are combined to diagnose the zonal wave numbers (m) of spectral wave signatures during the Southern Hemisphere sudden stratospheric warming (SSW) 2019. Diagnosed are quasi-10- and 6-day planetary waves (Q10DW and Q6DW, m = 1), solar semidiurnal tides with m = 1, 2, 3 (SW1, SW2, and SW3), lunar semidiurnal tide, and the upper and lower sidebands (USB and LSB, m = 1 and 3) of Q10DW-SW2 nonlinear interactions. We further present 7-year composite analyses to distinguish SSW effects from climatological features. Before (after) the SSW onset, LSB (USB) enhances, accompanied by the enhancing (fading) Q10DW, and a weakening of climatological SW2 maximum. These behaviors are explained in terms of Manley-Rowe relation, that is, the energy goes first from SW2 to Q10DW and LSB, and then from SW2 and Q10DW to USB. Our results illustrate that the interactions can explain most wind variabilities associated with the SSW. © 2020. The Authors.
  • Item
    ZonalWave Number Diagnosis of RossbyWave-Like Oscillations Using Paired Ground-Based Radars
    (Hoboken, NJ : Wiley, 2020) He, Maosheng; Yamazaki, Yosuke; Hoffmann, Peter; Hall, Chris M.; Tsutsumi, Masaki; Li, Guozhu; Chau, Jorge Luis
    Free traveling Rossby wave normal modes (RNMs) are often investigated through large-scale space-time spectral analyses, which therefore is subject to observational availability, especially in the mesosphere. Ground-based mesospheric observations were broadly used to identify RNMs mostly according to the periods of RNMs without resolving their horizontal scales. The current study diagnoses zonal wave numbers of RNM-like oscillations occurring in mesospheric winds observed by two meteor radars at about 79°N. We explore four winters comprising the major stratospheric sudden warming events (SSWs) 2009, 2010, and 2013. Diagnosed are predominant oscillations at the periods of 10 and 16 days lasting mostly for three to five whole cycles. All dominant oscillations are associated with westward zonal wave number m=1, excepting one 16-day oscillation associated with m=2. We discuss the m=1 oscillations as transient RNMs and the m=2 oscillation as a secondary wave of nonlinear interaction between an RNM and a stationary Rossby wave. All the oscillations occur around onsets of the three SSWs, suggesting associations between RNMs and SSWs. For comparison, we also explore the wind collected by a similar network at 54°N during 2012–2016. Explored is a manifestation of 5-day wave, namely, an oscillation at 5–7 days with m=1), around the onset of SSW 2013, supporting the associations between RNMs and SSWs. ©2020. The Authors.
  • Item
    Mesospheric Q2DW Interactions With Four Migrating Tides at 53°N Latitude: Zonal Wavenumber Identification Through Dual‐Station Approaches
    (Hoboken, NJ : Wiley, 2021) He, Maosheng; Forbes, Jeffrey M.; Li, Guozhu; Jacobi, Christoph; Hoffmann, Peter
    Mesospheric winds from two longitudinal sectors at 53°N latitude are combined to investigate quasi-two-day waves (Q2DWs) and their nonlinear interactions with tides. In a summer 2019 case study, we diagnose the zonal wavenumber m of spectral peaks at expected frequencies through two dual-station approaches, a phase differencing technique (PDT) on individual spectral peaks and a least squares procedure on family batched peaks. Consistent results from the approaches verify the occurrences of Rossby-gravity modes (m = 3 and 4 at periods T = 2.1 and 1.7 days), and their secondary waves (SWs) generated from interactions with diurnal, semi-diurnal, ter-diurnal, and quatra-diurnal migrating tides. We further extend the PDT to 2012–2019, illustrating that Q2DWs exhibit significant interannual variability. Composite analysis reveals seasonal and altitude variations of the Rossby-gravity modes and their SWs. The Rossby-gravity modes maximize in local summer, whereas their 16- and 9.6-h SWs appear more in winter.
  • Item
    High-Order Solar Migrating Tides Quench at SSW Onsets
    (Hoboken, NJ : Wiley, 2020) He, Maosheng; Forbes, Jeffrey M.; Chau, Jorge L.; Li, Guozhu; Wan, Weixing; Korotyshkin, Dmitry V.
    Sudden stratospheric warming events (SSWs) are the most spectacular atmospheric vertical coupling processes, well-known for being associated with diverse wave activities in the upper atmosphere and ionosphere. The first four solar tidal harmonics have been reported as being engaged. Here, combining mesospheric winds detected by three midlatitude radars, we demonstrate at least the first six harmonics that occurred during SSW 2018. Wave number diagnosis demonstrates that all six harmonics are dominated by migrating components. Wavelet analyses reveal that the fourth, fifth, and sixth harmonics quench after the SSW onset. The six harmonics and the quenching appear also in a statistical analysis based on near-12-year observations from one of the radars. We attribute the quenching to reversal of the background eastward wind. ©2020. The Authors.
  • Item
    Quasi‐2‐Day Wave in Low‐Latitude Atmospheric Winds as Viewed From the Ground and Space During January–March, 2020
    (Hoboken, NJ : Wiley, 2021) He, Maosheng; Chau, Jorge L.; Forbes, Jeffrey M.; Zhang, Xiaoli; Englert, Christoph R.; Harding, Brian J.; Immel, Thomas J.; Lima, Lourivaldo M.; Bhaskar Rao, S. Vijaya; Ratnam, M. Venkat; Li, Guozhu; Harlander, John M.; Marr, Kenneth D.; Makela, Jonathan J.
    Horizontal winds from four low-latitude (±15°) specular meteor radars (SMRs) and the Michelson Interferometer for Global High-resolution Thermospheric Imaging (MIGHTI) instrument on the ICON satellite, are combined to investigate quasi-2-day waves (Q2DWs) in early 2020. SMRs cover 80–100 km altitude whereas MIGHTI covers 95–300 km. Q2DWs are the largest dynamical feature of the summertime middle atmosphere. At the overlapping altitudes, comparisons between the derived Q2DWs exhibit excellent agreement. The SMR sensor array analyses show that the dominant zonal wavenumbers are s = +2 and + 3, and help resolve ambiguities in MIGHTI results. We present the first Q2DW depiction for s = +2 and s = +3 between 95 and 200 km, and show that their amplitudes are almost invariant between 80 and 100 km. Above 106 km, Q2DW amplitudes and phases present structures that might result from the superposition of Q2DWs and their aliased secondary waves.