Search Results

Now showing 1 - 3 of 3
  • Item
    Engineering Micropatterned Dry Adhesives: From Contact Theory to Handling Applications
    (Weinheim : Wiley-VCH, 2018) Hensel, René; Moh, Karsten; Arzt, Eduard
    Reversible adhesion is the key functionality to grip, place, and release objects nondestructively. Inspired by nature, micropatterned dry adhesives are promising candidates for this purpose and have attracted the attention of research groups worldwide. Their enhanced adhesion compared to nonpatterned surfaces is frequently demonstrated. An important conclusion is that the contact mechanics involved is at least as important as the surface energy and chemistry. In this paper, the roles of the contact geometry and mechanical properties are reviewed. With a focus on applications, the effects of substrate roughness and of temperature variations, and the long-term performance of micropatterned adhesives are discussed. The paper provides a link between the current, detailed understanding of micropatterned adhesives and emerging applications.
  • Item
    Improved development procedure to enhance the stability of microstructures created by two-photon polymerization
    (Amsterdam : Elsevier, 2018) Purtov, Julia; Verch, Andreas; Rogin, Peter; Hensel, René
    Natural functional surfaces often rely on unique nano- and micropatterns. To mimic such surfaces successfully, patterning techniques are required that enable the fabrication of three-dimensional structures at the nanoscale. It has been reported that two-photon polymerization (TPP) is a suitable method for this. However, polymer structures fabricated by TPP often tend to shrink and to collapse during the fabrication process. In particular, delicate structures suffer from their insufficient mechanical stability against capillary forces which mainly arisein the fabrication process during the evaporation of the developer and rinsing liquids. Here, we report a modified development approach, which enables an additional UV-treatment to post cross-link created structures before they are dried. We tested our approach on nanopillar arrays and microscopic pillar structures mimicking the moth-eye and the gecko adhesives, respectively. Our results indicate a significant improvement of the me- chanical stability of the polymer structures, resulting in fewer defects and reduced shrinkage of the structures.
  • Item
    Adhesion and relaxation of a soft elastomer on surfaces with skin like roughness
    (Amsterdam : Elsevier, 2018) Fischer, Sarah; Boyadzhieva, Silviya; Hensel, René; Kruttwig, Klaus; Arzt, Eduard
    For designing new skin adhesives, the complex mechanical interaction of soft elastomers with surfaces of various roughnesses needs to be better understood. We systematically studied the effects of a wide set of roughnesscharacteristics, film thickness, hold time and material relaxation on the adhesive behaviour of the silicone elastomer SSA 7–9800 (Dow Corning). As model surfaces, we used epoxy replicas obtained from substrates with roughness ranging from very smooth to skin-like. Our results demonstrate that films of thin and intermediate thickness (60 and 160 μm) adhered best to a sub-micron rough surface, with a pull-off stress of about 50 kPa. Significant variations in pull-off stress and detachment mechanism with roughness and hold time were found. In contrast, 320 μm thick films adhered with lower pull-off stress of about 17 kPa, but were less sensitive to roughness and hold time. It is demonstrated that the adhesion performance of the siliconefilms to rough surfaces can be tuned by tailoring the film thickness and contact time.