Search Results

Now showing 1 - 8 of 8
  • Item
    A case of extreme particulate matter concentrations over Central Europe caused by dust emitted over the southern Ukraine
    (München : European Geopyhsical Union, 2008) Birmili, W.; Schepanski, K.; Ansmann, A.; Spindler, G.; Tegen, I.; Wehner, B.; Nowak, A.; Reimer, E.; Mattis, I.; Müller, K.; Brüggemann, E.; Gnauk, T.; Herrmann, H.; Wiedensohler, A.; Althausen, D.; Schladitz, A.; Tuch, T.; Löschau, G.
    On 24 March 2007, an extraordinary dust plume was observed in the Central European troposphere. Satellite observations revealed its origins in a dust storm in Southern Ukraine, where large amounts of soil were resuspended from dried-out farmlands at wind gusts up to 30 m s−1. Along the pathway of the plume, maximum particulate matter (PM10) mass concentrations between 200 and 1400 μg m−3 occurred in Slovakia, the Czech Republic, Poland, and Germany. Over Germany, the dust plume was characterised by a volume extinction coefficient up to 400 Mm−1 and a particle optical depth of 0.71 at wavelength 0.532 μm. In-situ size distribution measurements as well as the wavelength dependence of light extinction from lidar and Sun photometer measurements confirmed the presence of a coarse particle mode with diameters around 2–3 μm. Chemical particle analyses suggested a fraction of 75% crustal material in daily average PM10 and up to 85% in the coarser fraction PM10–2.5. Based on the particle characteristics as well as a lack of increased CO and CO2 levels, a significant impact of biomass burning was ruled out. The reasons for the high particle concentrations in the dust plume were twofold: First, dust was transported very rapidly into Central Europe in a boundary layer jet under dry conditions. Second, the dust plume was confined to a relatively stable boundary layer of 1.4–1.8 km height, and could therefore neither expand nor dilute efficiently. Our findings illustrate the capacity of combined in situ and remote sensing measurements to characterise large-scale dust plumes with a variety of aerosol parameters. Although such plumes from Southern Eurasia seem to occur rather infrequently in Central Europe, its unexpected features highlights the need to improve the description of dust emission, transport and transformation processes needs, particularly when facing the possible effects of further anthropogenic desertification and climate change.
  • Item
    Reactive Halogens in the Marine Boundary Layer (RHaMBLe): The tropical North Atlantic experiments
    (München : European Geopyhsical Union, 2010) Lee, J.D.; McFiggans, G.; Allan, J.D.; Baker, A.R.; Ball, S.M.; Benton, A.K.; Carpenter, L.J.; Commane, R.; Finley, B.D.; Evans, M.; Fuentes, E.; Furneaux, K.; Goddard, A.; Good, N.; Hamilton, J.F.; Heard, D.E.; Herrmann, H.; Hollingsworth, A.; Hopkins, J.R.; Ingham, T.; Irwin, M.; Jones, C.E.; Jones, R.L.; Keene, W.C.; Lawler, M.J.; Lehmann, S.; Lewis, A.C.; Long, M.S.; Mahajan, A.; Methven, J.; Moller, S.J.; Müller, K.; Müller, T.; Niedermeier, N.; O'Doherty, S.; Oetjen, H.; Plane, J.M.C.; Pszenny, A.A.P.; Read, K.A.; Saiz-Lopez, A.; Saltzman, E.S.; Sander, R.; von Glasow, R.; Whalley, L.; Wiedensohler, A.; Young, D.
    The NERC UK SOLAS-funded Reactive Halogens in the Marine Boundary Layer (RHaMBLe) programme comprised three field experiments. This manuscript presents an overview of the measurements made within the two simultaneous remote experiments conducted in the tropical North Atlantic in May and June 2007. Measurements were made from two mobile and one ground-based platforms. The heavily instrumented cruise D319 on the RRS Discovery from Lisbon, Portugal to São Vicente, Cape Verde and back to Falmouth, UK was used to characterise the spatial distribution of boundary layer components likely to play a role in reactive halogen chemistry. Measurements onboard the ARSF Dornier aircraft were used to allow the observations to be interpreted in the context of their vertical distribution and to confirm the interpretation of atmospheric structure in the vicinity of the Cape Verde islands. Long-term ground-based measurements at the Cape Verde Atmospheric Observatory (CVAO) on São Vicente were supplemented by long-term measurements of reactive halogen species and characterisation of additional trace gas and aerosol species during the intensive experimental period. This paper presents a summary of the measurements made within the RHaMBLe remote experiments and discusses them in their meteorological and chemical context as determined from these three platforms and from additional meteorological analyses. Air always arrived at the CVAO from the North East with a range of air mass origins (European, Atlantic and North American continental). Trace gases were present at stable and fairly low concentrations with the exception of a slight increase in some anthropogenic components in air of North American origin, though NOx mixing ratios during this period remained below 20 pptv (note the non-IUPAC adoption in this manuscript of pptv and ppbv, equivalent to pmol mol−1 and nmol mol−1 to reflect common practice). Consistency with these air mass classifications is observed in the time series of soluble gas and aerosol composition measurements, with additional identification of periods of slightly elevated dust concentrations consistent with the trajectories passing over the African continent. The CVAO is shown to be broadly representative of the wider North Atlantic marine boundary layer; measurements of NO, O3 and black carbon from the ship are consistent with a clean Northern Hemisphere marine background. Aerosol composition measurements do not indicate elevated organic material associated with clean marine air. Closer to the African coast, black carbon and NO levels start to increase, indicating greater anthropogenic influence. Lower ozone in this region is possibly associated with the increased levels of measured halocarbons, associated with the nutrient rich waters of the Mauritanian upwelling. Bromide and chloride deficits in coarse mode aerosol at both the CVAO and on D319 and the continuous abundance of inorganic gaseous halogen species at CVAO indicate significant reactive cycling of halogens. Aircraft measurements of O3 and CO show that surface measurements are representative of the entire boundary layer in the vicinity both in diurnal variability and absolute levels. Above the inversion layer similar diurnal behaviour in O3 and CO is observed at lower mixing ratios in the air that had originated from south of Cape Verde, possibly from within the ITCZ. ECMWF calculations on two days indicate very different boundary layer depths and aircraft flights over the ship replicate this, giving confidence in the calculated boundary layer depth.
  • Item
    Terpenylic acid and related compounds: precursors for dimers in secondary organic aerosol from the ozonolysis of α- and β-pinene
    (München : European Geopyhsical Union, 2010) Yasmeen, F.; Vermeylen, R.; Szmigielski, R.; Iinuma, Y.; Böge, O.; Herrmann, H.; Maenhaut, W.; Claeys, M.
    In the present study, we have characterized the structure of a higher-molecular weight (MW) 358 α- and β-pinene dimeric secondary organic aerosol (SOA) product that received ample attention in previous molecular characterization studies and has been elusive. Based on mass spectrometric evidence for deprotonated molecules formed by electrospray ionization in the negative ion mode and chemical considerations, it is suggested that diaterpenylic acid is a key monomeric intermediate for dimers of the ester type. It is proposed that cis-pinic acid is esterified with the hydroxyl-containing diaterpenylic acid, which can be explained through acid-catalyzed hydrolysis of the recently elucidated lactone-containing terpenylic acid and/or diaterpenylic acid acetate, both first-generation oxidation products. To a minor extent, higher-MW 358 and 344 diester products are formed containing other terpenoic acids as monomeric units, i.e., diaterpenylic acid instead of cis-pinic acid, and diaterebic acid instead of diaterpenylic acid. It is shown that the MW 358 diester and related MW 344 compounds, which can be regarded as processed SOA products, also occur in ambient fine (PM2.5) rural aerosol collected at night during the warm period of the 2006 summer field campaign conducted at K-puszta, Hungary, a rural site with coniferous vegetation. This indicates that, under ambient conditions, the higher-MW diesters are formed in the particle phase over a longer time-scale than that required for gas-to-particle partitioning of their monomeric precursors in laboratory α-/β-pinene ozonolysis experiments.
  • Item
    Particle characterization at the Cape Verde atmospheric observatory during the 2007 RHaMBLe intensive
    (München : European Geopyhsical Union, 2010) Müller, K.; Lehmann, S.; van Pinxteren, D.; Gnauk, T.; Niedermeier, N.; Wiedensohler, A.; Herrmann, H.
    The chemical characterization of filter high volume (HV) and Berner impactor (BI) samples PM during RHaMBLe (Reactive Halogens in the Marine Boundary Layer) 2007 shows that the Cape Verde aerosol particles are mainly composed of sea salt, mineral dust and associated water. Minor components are nss-salts, OC and EC. The influence from the African continent on the aerosol constitution was generally small but air masses which came from south-western Europe crossing the Canary Islands transported dust to the sampling site together with other loadings. The mean mass concentration was determined for PM10 to 17 μg/m3 from impactor samples and to 24.2 μg/m3 from HV filter samples. Non sea salt (nss) components of PM were found in the submicron fractions and nitrate in the coarse mode fraction. Bromide was found in all samples with much depleted concentrations in the range 1–8 ng/m3 compared to fresh sea salt aerosol indicating intense atmospheric halogen chemistry. Loss of bromide by ozone reaction during long sampling time is supposed and resulted totally in 82±12% in coarse mode impactor samples and in filter samples in 88±6% bromide deficits. A chloride deficit was determined to 8% and 1% for the coarse mode particles (3.5–10 μm; 1.2–3.5 μm) and to 21% for filter samples. During 14 May with high mineral dust loads also the maximum of OC (1.71μg/m3) and EC (1.25 μg/m3) was measured. The minimum of TC (0.25 μg/m3) was detected during the period 25 to 27 May when pure marine air masses arrived. The concentrations of carbonaceous material decrease with increasing particle size from 60% for the ultra fine particles to 2.5% in coarse mode PM. Total iron (dust vs. non-dust: 0.53 vs. 0.06 μg m3), calcium (0.22 vs. 0.03 μg m3) and potassium (0.33 vs. 0.02 μg m3) were found as good indicators for dust periods because of their heavily increased concentration in the 1.2 to 3.5 μm fraction as compared to their concentration during the non-dust periods. For the organic constituents, oxalate (78–151 ng/m3) and methanesulfonic acid (MSA, 25–100 ng/m3) are the major compounds identified. A good correlation between nss-sulphate and MSA was found for the majority of days indicating active DMS chemistry and low anthropogenic influences.
  • Item
    Seasonal variation of aliphatic amines in marine sub-micrometer particles at the Cape Verde islands
    (München : European Geopyhsical Union, 2009) Müller, C.; Iinuma, Y.; Karstensen, J.; van Pinxteren, D.; Lehmann, S.; Gnauk, T.; Herrmann, H.
    Monomethylamine (MA), dimethylamine (DMA) and diethylamine (DEA) were detected at non-negligible concentrations in sub-micrometer particles at the Cap Verde Atmospheric Observatory (CVAO) located on the island of São Vicente in Cape Verde during algal blooms in 2007. The concentrations of these amines in five stage impactor samples ranged from 0–30 pg m−3 for MA, 130–360 pg m−3 for DMA and 5–110 pg m−3 for DEA during the spring bloom in May 2007 and 2–520 pg m−3 for MA, 100–1400 pg m−3 for DMA and 90–760 pg m−3 for DEA during an unexpected winter algal bloom in December 2007. Anomalously high Saharan dust deposition and intensive ocean layer deepening were found at the Atmospheric Observatory and the associated Ocean Observatory during algal bloom periods. The highest amine concentrations in fine particles (impactor stage 2, 0.14–0.42 μm) indicate that amines are likely taken up from the gas phase into the acidic sub-micrometer particles. The contribution of amines to the organic carbon (OC) content ranged from 0.2–2.5% C in the winter months, indicating the importance of this class of compounds to the carbon cycle in the marine environment. Furthermore, aliphatic amines originating from marine biological sources likely contribute significantly to the nitrogen content in the marine atmosphere. The average contribution of the amines to the detected nitrogen species in sub-micrometer particles can be non-negligible, especially in the winter months (0.1% N–1.5% N in the sum of nitrate, ammonium and amines). This indicates that these smaller aliphatic amines can be important for the carbon and the nitrogen cycles in the remote marine environment.
  • Item
    Hygroscopic growth of urban aerosol particles in Beijing (China) during wintertime: A comparison of three experimental methods
    (München : European Geopyhsical Union, 2009) Meier, J.; Wehner, B.; Massling, A.; Birmili, W.; Nowak, A.; Gnauk, T.; Brüggemann, E.; Herrmann, H.; Min, H.; Wiedensohler, A.
    The hygroscopic properties of atmospheric aerosols are highly relevant for the quantification of radiative effects in the atmosphere, but also of interest for the assessment of particle health effects upon inhalation. This article reports measurements of aerosol particle hygroscopicity in the highly polluted urban atmosphere of Beijing, China in January 2005. The meteorological conditions corresponded to a relatively cold and dry atmosphere. Three different methods were used: 1) A combination of Humidifying Differential Mobility Particle Sizer (H-DMPS) and Twin Differential Mobility Particle Sizer (TDMPS) measurements, 2) A Hygroscopic Tandem Differential Mobility Analyzer (H-TDMA), and 3) A simplistic solubility model fed by chemical particle composition determined from Micro Orifice Uniform Deposit Impactor (MOUDI) samples. From the H-DMPS and TDMPS particle number size distributions, a size-resolved descriptive hygroscopic growth factor (DHGF) was determined for the relative humidities (RH) 55%, 77% and 90%, and particle diameters between 30 and 400 nm. In Beijing, the highest DHGFs were observed for accumulation mode particles, 1.40 (±0.03) at 90% RH. DHGF decreased significantly with particle size, reaching 1.04 (±0.15) at 30 nm. H-TDMA data also suggest a decrease in growth factor towards the biggest particles investigated (350 nm), associated with an increasing fraction of nearly hydrophobic particles. The agreement between the H-DMPS/TDMPS and H-TDMA methods was satisfactory in the accumulation mode size range (100–400 nm). In the Aitken mode range (<100 nm), the H-DMPS/TDMPS method yielded growth factors lower by up to 0.1 at 90% RH. The application of the solubility model based on measured chemical composition clearly reproduced the size-dependent trend in hygroscopic particle growth observed by the other methods. In the case of aerosol dominated by inorganic ions, the composition-derived growth factors tended to agree (± 0.05) or underestimate (up to 0.1) the values measured by the other two methods. In the case of aerosol dominated by organics, the reverse was true, with an overestimation of up to 0.2. The results shed light on the experimental and methodological uncertainties that are still connected with the determination of hygroscopic growth factors.
  • Item
    Composition and properties of atmospheric particles in the eastern Atlantic and impacts on gas phase uptake rates
    (München : European Geopyhsical Union, 2009) Allan, J.D.; Topping, D.O.; Good, N.; Irwin, M.; Flynn, M.; Williams, P.I.; Coe, H.; Baker, A.R.; Martino, M.; Niedermeier, N.; Wiedensohler, A.; Lehmann, S.; Müller, K.; Herrmann, H.; McFiggans, G.
    Marine aerosol composition continues to represent a large source of uncertainty in the study of climate and atmospheric chemistry. In addition to their physical size and chemical composition, hygroscopicity plays a significant role, increasing the particles' surface areas and scattering potential. Simultaneous aerosol measurements were performed on board the RRS Discovery and at the Cape Verde atmospheric observatory during the Aerosol Composition and Modelling in the Marine Environment (ACMME) and Reactive Halogens in the Marine Boundary Layer (RHAMBLE) experiments. These included online measurements of number and dry size and bulk collection for offline analysis of aqueous ions. In addition, the measurements on board the Discovery included online measurements of composition using an Aerodyne Aerosol Mass Spectrometer, optical absorption using a Multi Angle Absorption Photometer, ambient humidity size distribution measurements using a humidified differential mobility particle sizer (DMPS) and optical particle counter (OPC) and hygroscopicity measurements with a hygroscopicity tandem differential mobility analyser (HTDMA). Good agreement between platforms in terms of the sea salt (ss) and non sea salt (nss) modes was found during the period when the Discovery was in close proximity to Cape Verde and showed a composition consistent with remote marine air. As the Discovery approached the African coast, the aerosol showed signs of continental influence such as an increase in particle number, optical absorption, enhancement of the nss mode and dust particles. The Cape Verde site was free of this influence during this period. Chloride and bromide showed concentrations with significant deviations from seawater relative to sodium, indicating that atmospheric halogen processing (and/or acid displacement for chloride) had taken place. The time dependent ambient size distribution was synthesised using humidified DMPS and OPC data, corrected to ambient humidity using HTDMA data. Heterogeneous uptake rates of hypoiodous acid (HOI) were also predicted and the nss accumulation mode was found to be the most significant part of the size distribution, which could act as an inert sink for this species. The predicted uptake rates were enhanced by around a factor of 2 during the African influence period due to the addition of both coarse and fine particles. The hygroscopicity of the nss fraction was modelled using the Aerosol Diameter Dependent Equilibrium Model (ADDEM) using the measured composition and results compared with the HTDMA data. This was the first time such a reconciliation study with this model has been performed with marine data and good agreement was reached within the resolution of the instruments. The effect of hygroscopic growth on HOI uptake was also modelled and ambient uptake rates were found to be approximately doubled compared to equivalent dry particles.
  • Item
    The formation, properties and impact of secondary organic aerosol: Current and emerging issues
    (München : European Geopyhsical Union, 2009) Hallquist, M.; Wenger, J.C.; Baltensperger, U.; Rudich, Y.; Simpson, D.; Claeys, M.; Dommen, J.; Donahue, N.M.; George, C.; Goldstein, A.; Hamilton, J.F.; Herrmann, H.; Hoffmann, T.; Iinuma, Y.; Jang, M.; Jenkin, M.E.; Jimenez, J.L.; Kiendler-Scharr, A.; Maenhaut, W.; McFiggans, G.; Mentel, Th.F.; Monod, A.; Prévôt, A.S.H.; Seinfeld, J.H.; Surratt, J.D.; Szmigielski, R.; Wildt, J.
    Secondary organic aerosol (SOA) accounts for a significant fraction of ambient tropospheric aerosol and a detailed knowledge of the formation, properties and transformation of SOA is therefore required to evaluate its impact on atmospheric processes, climate and human health. The chemical and physical processes associated with SOA formation are complex and varied, and, despite considerable progress in recent years, a quantitative and predictive understanding of SOA formation does not exist and therefore represents a major research challenge in atmospheric science. This review begins with an update on the current state of knowledge on the global SOA budget and is followed by an overview of the atmospheric degradation mechanisms for SOA precursors, gas-particle partitioning theory and the analytical techniques used to determine the chemical composition of SOA. A survey of recent laboratory, field and modeling studies is also presented. The following topical and emerging issues are highlighted and discussed in detail: molecular characterization of biogenic SOA constituents, condensed phase reactions and oligomerization, the interaction of atmospheric organic components with sulfuric acid, the chemical and photochemical processing of organics in the atmospheric aqueous phase, aerosol formation from real plant emissions, interaction of atmospheric organic components with water, thermodynamics and mixtures in atmospheric models. Finally, the major challenges ahead in laboratory, field and modeling studies of SOA are discussed and recommendations for future research directions are proposed.