Search Results

Now showing 1 - 5 of 5
  • Item
    Real-time detection of highly oxidized organosulfates and BSOA marker compounds during the F-BEACh 2014 field study
    (München : European Geopyhsical Union, 2017) Brüggemann, Martin; Poulain, Laurent; Held, Andreas; Stelzer, Torsten; Zuth, Christoph; Richters, Stefanie; Mutzel, Anke; van Pinxteren, Dominik; Iinuma, Yoshiteru; Katkevica, Sarmite; Rabe, René; Herrmann, Hartmut; Hoffmann, Thorsten
    The chemical composition of ambient organic aerosols was analyzed using complementary mass spectrometric techniques during a field study in central Europe in July 2014 (Fichtelgebirge – Biogenic Emission and Aerosol Chemistry, F-BEACh 2014). Among several common biogenic secondary organic aerosol (BSOA) marker compounds, 93 acidic oxygenated hydrocarbons were detected with elevated abundances and were thus attributed to be characteristic for the organic aerosol mass at the site. Monoterpene measurements exhibited median mixing ratios of 1.6 and 0.8 ppbV for in and above canopy levels respectively. Nonetheless, concentrations for early-generation oxidation products were rather low, e.g., pinic acid (c  =  4.7 (±2.5) ng m−3). In contrast, high concentrations were found for later-generation photooxidation products such as 3-methyl-1,2,3-butanetricarboxylic acid (MBTCA, c  =  13.8 (±9.0) ng m−3) and 3-carboxyheptanedioic acid (c  =  10.2 (±6.6) ng m−3), suggesting that aged aerosol masses were present during the campaign period. In agreement, HYSPLIT trajectory calculations indicate that most of the arriving air masses traveled long distances (>  1500 km) over land with high solar radiation. In addition, around 47 % of the detected compounds from filter sample analysis contained sulfur, confirming a rather high anthropogenic impact on biogenic emissions and their oxidation processes. Among the sulfur-containing compounds, several organosulfates, nitrooxy organosulfates, and highly oxidized organosulfates (HOOS) were tentatively identified by high-resolution mass spectrometry. Correlations among HOOS, sulfate, and highly oxidized multifunctional organic compounds (HOMs) support the hypothesis of previous studies that HOOS are formed by reactions of gas-phase HOMs with particulate sulfate. Moreover, periods with high relative humidity indicate that aqueous-phase chemistry might play a major role in HOOS production. However, for dryer periods, coinciding signals for HOOS and gas-phase peroxyradicals (RO2•) were observed, suggesting RO2• to be involved in HOOS formation.
  • Item
    Multi-year ACSM measurements at the central European research station Melpitz (Germany)-Part 1: Instrument robustness, quality assurance, and impact of upper size cutoff diameter
    (Katlenburg-Lindau : Copernicus, 2020) Poulain, Laurent; Spindler, Gerald; Grüner, Achim; Tuch, Thomas; Stieger, Bastian; van Pinxteren, Dominik; Petit, Jean-Eudes; Favez, Olivier; Herrmann, Hartmut; Wiedensohler, Alfred
    The aerosol chemical speciation monitor (ACSM) is nowadays widely used to identify and quantify the main components of fine particles in ambient air. As such, its deployment at observatory platforms is fully incorporated within the European Aerosol, Clouds and Trace Gases Research Infrastructure (ACTRIS). Regular intercomparisons are organized at the Aerosol Chemical Monitoring Calibration Center (ACMCC; part of the European Center for Aerosol Calibration, Paris, France) to ensure the consistency of the dataset, as well as instrumental performance and variability. However, in situ quality assurance remains a fundamental aspect of the instrument's stability. Here, we present and discuss the main outputs of long-term quality assurance efforts achieved for ACSM measurements at the research station Melpitz (Germany) since 2012 onwards. In order to validate the ACSM measurements over the years and to characterize seasonal variations, nitrate, sulfate, ammonium, organic, and particle mass concentrations were systematically compared against the collocated measurements of daily offline high-volume PM1 and PM2:5 filter samples and particle number size distribution (PNSD) measurements. Mass closure analysis was made by comparing the total particle mass (PM) concentration obtained by adding the mass concentration of equivalent black carbon (eBC) from the multi-angle absorption photometer (MAAP) to the ACSM chemical composition, to that of PM1 and PM2:5 during filter weighing, as well as to the derived mass concentration of PNSD. A combination of PM1 and PM2:5 filter samples helped identifying the critical importance of the upper size cutoff of the ACSM during such exercises. The ACSM-MAAP-derived mass concentrations systematically deviated from the PM1 mass when the mass concentration of the latter represented less than 60% of PM2:5, which was linked to the transmission efficiency of the aerodynamic lenses of the ACSM. The best correlations are obtained for sulfate (slopeD 0:96; R2 D 0:77) and total PM (slopeD 1:02; R2 D 0:90). Although, sulfate did not exhibit a seasonal dependency, total PM mass concentration revealed a small seasonal variability linked to the increase in non-water-soluble fractions. The nitrate suffers from a loss of ammonium nitrate during filter collection, and the contribution of organo-nitrate compounds to the ACSM nitrate signal make it difficult to directly compare the two methods. The contribution of m=z 44 (f44) to the total organic mass concentration was used to convert the ACSM organic mass (OM) to organic carbon (OC) by using a similar approach as for the aerosol mass spectrometer (AMS). The resulting estimated OCACSM was compared with the measured OCPM1 (slopeD 0:74; R2 D 0:77), indicating that the f44 signal was relatively free of interferences during this period. The PM2:5 filter samples use for the ACSM data quality might suffer from a systematic bias due to a size truncation effect as well as to the presence of chemical species that cannot be detected by the ACSM in coarse mode (e.g., sodium nitrate and sodium sulfate). This may lead to a systematic underestimation of the ACSM particle mass concentration and/or a positive artifact that artificially decreases the discrepancies between the two methods. Consequently, ACSM data validation using PM2:5 filters has to be interpreted with extreme care. The particle mass closure with the PNSD was satisfying (slopeD 0:77; R2 D 0:90 over the entire period), with a slight overestimation of the mobility particle size spectrometer (MPSS)-derived mass concentration in winter. This seasonal variability was related to a change on the PNSD and a larger contribution of the supermicrometer particles in winter. This long-term analysis between the ACSM and other collocated instruments confirms the robustness of the ACSM and its suitability for long-term measurements. Particle mass closure with the PNSD is strongly recommended to ensure the stability of the ACSM. A near-real-time mass closure procedure within the entire ACTRIS-ACSM network certainly represents an optimal quality control and assurance of both warranting the quality assurance of the ACSM measurements as well as identifying cross-instrumental biases. © Author(s) 2020.
  • Item
    Source apportionment and impact of long-range transport on carbonaceous aerosol particles in central Germany during HCCT-2010
    (Katlenburg-Lindau : EGU, 2021) Poulain, Laurent; Fahlbusch, Benjamin; Spindler, Gerald; Mueller, Konrad; van Pinxteren, Dominik; Wu, Zhijun; Iinuma, Yoshiteru; Birmili, Wolfram; Wiedensohler, Alfred; Herrmann, Hartmut
    The identification of different sources of the carbonaceous aerosol (organics and black carbon) was investigated at a mountain forest site located in central Germany from September to October 2010 to characterize incoming air masses during the Hill Cap Cloud Thuringia 2010 (HCCT-2010) experiment. The near-PM1 chemical composition, as measured by a high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS), was dominated by organic aerosol (OA; 41 %) followed by sulfate (19 %) and nitrate (18 %). Source apportionment of the OA fraction was performed using the multilinear engine (ME-2) approach, resulting in the identification of the following five factors: hydrocarbon-like OA (HOA; 3 % of OA mass), biomass burning OA (BBOA; 13 %), semi-volatile-like OA (SV-OOA; 19 %), and two oxygenated OA (OOA) factors. The more oxidized OOA (MO-OOA, 28 %) was interpreted as being influenced by aged, polluted continental air masses, whereas the less oxidized OOA (LO-OOA, 37 %) was found to be more linked to aged biogenic sources. Equivalent black carbon (eBC), measured by a multi-angle absorption photometer (MAAP) represented 10 % of the total particulate matter (PM). The eBC was clearly associated with HOA, BBOA, and MO-OOA factors (all together R2=0.83). Therefore, eBC's contribution to each factor was achieved using a multi-linear regression model. More than half of the eBC (52 %) was associated with long-range transport (i.e., MO-OOA), whereas liquid fuel eBC (35 %) and biomass burning eBC (13 %) were associated with local emissions, leading to a complete apportionment of the carbonaceous aerosol. The separation between local and transported eBC was well supported by the mass size distribution of elemental carbon (EC) from Berner impactor samples. Air masses with the strongest marine influence, based on back trajectory analysis, corresponded with a low particle mass concentration (6.4–7.5 µg m−3) and organic fraction (≈30 %). However, they also had the largest contribution of primary OA (HOA ≈ 4 % and BBOA 15 %–20 %), which was associated with local emissions. Continental air masses had the highest mass concentration (11.4–12.6 µg m−3), and a larger fraction of oxygenated OA (≈45 %) indicated highly processed OA. The present results emphasize the key role played by long-range transport processes not only in the OA fraction but also in the eBC mass concentration and the importance of improving our knowledge on the identification of eBC sources.
  • Item
    Development of a protocol for the auto-generation of explicit aqueous-phase oxidation schemes of organic compounds
    (Katlenburg-Lindau : EGU, 2019) Bräuer, Peter; Mouchel-Vallon, Camille; Tilgner, Andreas; Mutzel, Anke; Böge, Olaf; Rodigast, Maria; Poulain, Laurent; van Pinxteren, Dominik; Wolke, Ralf; Aumont, Bernard; Herrmann, Hartmut
    This paper presents a new CAPRAM-GECKOA protocol for mechanism auto-generation of aqueous-phase organic processes. For the development, kinetic data in the literature were reviewed and a database with 464 aqueousphase reactions of the hydroxyl radical with organic compounds and 130 nitrate radical reactions with organic compounds has been compiled and evaluated. Five different methods to predict aqueous-phase rate constants have been evaluated with the help of the kinetics database: gas-aqueous phase correlations, homologous series of various compound classes, radical reactivity comparisons, Evans-Polanyi-type correlations, and structure-activity relationships (SARs). The quality of these prediction methods was tested as well as their suitability for automated mechanism construction. Based on this evaluation, SARs form the basis of the new CAPRAM-GECKO-A protocol. Evans-Polanyi-type correlations have been advanced to consider all available H atoms in a molecule besides the H atoms with only the weakest bond dissociation enthalpies (BDEs). The improved Evans- Polanyi-type correlations are used to predict rate constants for aqueous-phase NO3 and organic compounds reactions. Extensive tests have been performed on essential parameters and on highly uncertain parameters with limited experimental data. These sensitivity studies led to further improvements in the new CAPRAM-GECKO-A protocol but also showed current limitations. Biggest uncertainties were observed in uptake processes and the estimation of Henry's law coefficients as well as radical chemistry, in particular the degradation of alkoxy radicals. Previous estimation methods showed several deficits, which impacted particle growth. For further evaluation, a 1,3,5-trimethylbenzene oxidation experiment has been performed in the aerosol chamber "Leipziger Aerosolkammer" (LEAK) at high relative humidity conditions and compared to a multiphase mechanism using the Master Chemical Mechanism (MCMv3.2) in the gas phase and using a methylglyoxal oxidation scheme of about 600 reactions generated with the new CAPRAM-GECKO-A protocol in the aqueous phase. While it was difficult to evaluate single particle constituents due to concentrations close to the detection limits of the instruments applied, the model studies showed the importance of aqueous-phase chemistry in respect to secondary organic aerosol (SOA) formation and particle growth. The new protocol forms the basis for further CAPRAM mechanism development towards a new version 4.0. Moreover, it can be used as a supplementary tool for aerosol chambers to design and analyse experiments of chemical complexity and help to understand them on a molecular level. © 2019 Author(s).
  • Item
    Size-resolved aerosol composition at an urban and a rural site in the Po Valley in summertime: implications for secondary aerosol formation
    (München : European Geopyhsical Union, 2016) Sandrini, Silvia; van Pinxteren, Dominik; Giulianelli, Lara; Herrmann, Hartmut; Poulain, Laurent; Facchini, Maria Cristina; Gilardoni, Stefania; Rinaldi, Matteo; Paglione, Marco; Turpin, Barbara J.; Pollini, Francesca; Bucci, Silvia; Zanca, Nicola; Decesari, Stefano
    The aerosol size-segregated chemical composition was analyzed at an urban (Bologna) and a rural (San Pietro Capofiume) site in the Po Valley, Italy, during June and July 2012, by ion-chromatography (major water-soluble ions and organic acids) and evolved gas analysis (total and water-soluble carbon), to investigate sources and mechanisms of secondary aerosol formation during the summer. A significant enhancement of secondary organic and inorganic aerosol mass was observed under anticyclonic conditions with recirculation of planetary boundary layer air but with substantial differences between the urban and the rural site. The data analysis, including a principal component analysis (PCA) on the size-resolved dataset of chemical concentrations, indicated that the photochemical oxidation of inorganic and organic gaseous precursors was an important mechanism of secondary aerosol formation at both sites. In addition, at the rural site a second formation process, explaining the largest fraction (22 %) of the total variance, was active at nighttime, especially under stagnant conditions. Nocturnal chemistry in the rural Po Valley was associated with the formation of ammonium nitrate in large accumulation-mode (0.42–1.2 µm) aerosols favored by local thermodynamic conditions (higher relative humidity and lower temperature compared to the urban site). Nocturnal concentrations of fine nitrate were, in fact, on average 5 times higher at the rural site than in Bologna. The water uptake by this highly hygroscopic compound under high RH conditions provided the medium for increased nocturnal aerosol uptake of water-soluble organic gases and possibly also for aqueous chemistry, as revealed by the shifting of peak concentrations of secondary compounds (water-soluble organic carbon (WSOC) and sulfate) toward the large accumulation mode (0.42–1.2 µm). Contrarily, the diurnal production of WSOC (proxy for secondary organic aerosol) by photochemistry was similar at the two sites but mostly affected the small accumulation mode of particles (0.14–0.42 µm) in Bologna, while a shift to larger accumulation mode was observed at the rural site. A significant increment in carbonaceous aerosol concentration (for both WSOC and water-insoluble carbon) at the urban site was recorded mainly in the quasi-ultrafine fraction (size range 0.05–0.14 µm), indicating a direct influence of traffic emissions on the mass concentrations of this range of particles.