Search Results

Now showing 1 - 3 of 3
  • Item
    Evidence for ambient dark aqueous SOA formation in the Po Valley, Italy
    (München : European Geopyhsical Union, 2016) Sullivan, Amy P.; Hodas, Natasha; Turpin, Barbara J.; Skog, Kate; Keutsch, Frank N.; Gilardoni, Stefania; Paglione, Marco; Rinaldi, Matteo; Decesari, Stefano; Facchini, Maria Cristina; Poulain, Laurent; Herrmann, Hartmut; Wiedensohler, Alfred; Nemitz, Eiko; Twigg, Marsailidh M.; Collett, Jeffrey L. Jr.
    Laboratory experiments suggest that water-soluble products from the gas-phase oxidation of volatile organic compounds can partition into atmospheric waters where they are further oxidized to form low volatility products, providing an alternative route for oxidation in addition to further oxidation in the gas phase. These products can remain in the particle phase after water evaporation, forming what is termed as aqueous secondary organic aerosol (aqSOA). However, few studies have attempted to observe ambient aqSOA. Therefore, a suite of measurements, including near-real-time WSOC (water-soluble organic carbon), inorganic anions/cations, organic acids, and gas-phase glyoxal, were made during the PEGASOS (Pan-European Gas-AeroSOls-climate interaction Study) 2012 campaign in the Po Valley, Italy, to search for evidence of aqSOA. Our analysis focused on four periods: Period A on 19–21 June, Period B on 30 June and 1–2 July, Period C on 3–5 July, and Period D on 6–7 July to represent the first (Period A) and second (Periods B, C, and D) halves of the study. These periods were picked to cover varying levels of WSOC and aerosol liquid water. In addition, back trajectory analysis suggested all sites sampled similar air masses on a given day. The data collected during both periods were divided into times of increasing relative humidity (RH) and decreasing RH, with the aim of diminishing the influence of dilution and mixing on SOA concentrations and other measured variables. Evidence for local aqSOA formation was only observed during Period A. When this occurred, there was a correlation of WSOC with organic aerosol (R2 = 0.84), aerosol liquid water (R2 = 0.65), RH (R2 = 0.39), and aerosol nitrate (R2 = 0.66). Additionally, this was only observed during times of increasing RH, which coincided with dark conditions. Comparisons of WSOC with oxygenated organic aerosol (OOA) factors, determined from application of positive matrix factorization analysis on the aerosol mass spectrometer observations of the submicron non-refractory organic particle composition, suggested that the WSOC differed in the two halves of the study (Period A WSOC vs. OOA-2 R2 = 0.83 and OOA-4 R2 = 0.04, whereas Period C WSOC vs. OOA-2 R2 = 0.03 and OOA-4 R2 = 0.64). OOA-2 had a high O ∕ C (oxygen ∕ carbon) ratio of 0.77, providing evidence that aqueous processing was occurring during Period A. Key factors of local aqSOA production during Period A appear to include air mass stagnation, which allows aqSOA precursors to accumulate in the region; the formation of substantial local particulate nitrate during the overnight hours, which enhances water uptake by the aerosol; and the presence of significant amounts of ammonia, which may contribute to ammonium nitrate formation and subsequent water uptake and/or play a more direct role in the aqSOA chemistry.
  • Item
    Nitrate radicals and biogenic volatile organic compounds: Oxidation, mechanisms, and organic aerosol
    (München : European Geopyhsical Union, 2017) Ng, Nga Lee; Brown, Steven S.; Archibald, Alexander T.; Atlas, Elliot; Cohen, Ronald C.; Crowley, John N.; Day, Douglas A.; Donahue, Neil M.; Fry, Juliane L.; Fuchs, Hendrik; Griffin, Robert J.; Guzman, Marcelo I.; Herrmann, Hartmut; Hodzic, Alma; Iinuma, Yoshiteru; Jimenez, José L.; Kiendler-Scharr, Astrid; Lee, Ben H.; Luecken, Deborah J.; Mao, Jingqiu; McLaren, Robert; Mutzel, Anke; Osthoff, Hans D.; Ouyang, Bin; Picquet-Varrault, Benedicte; Platt, Ulrich; Pye, Havala O.T.; Rudich, Yinon; Schwantes, Rebecca H.; Shiraiwa, Manabu; Stutz, Jochen; Thornton, Joel A.; Tilgner, Andreas; Williams, Brent J.; Zaveri, Rahul A.
    Oxidation of biogenic volatile organic compounds (BVOC) by the nitrate radical (NO3) represents one of the important interactions between anthropogenic emissions related to combustion and natural emissions from the biosphere. This interaction has been recognized for more than 3 decades, during which time a large body of research has emerged from laboratory, field, and modeling studies. NO3-BVOC reactions influence air quality, climate and visibility through regional and global budgets for reactive nitrogen (particularly organic nitrates), ozone, and organic aerosol. Despite its long history of research and the significance of this topic in atmospheric chemistry, a number of important uncertainties remain. These include an incomplete understanding of the rates, mechanisms, and organic aerosol yields for NO3-BVOC reactions, lack of constraints on the role of heterogeneous oxidative processes associated with the NO3 radical, the difficulty of characterizing the spatial distributions of BVOC and NO3 within the poorly mixed nocturnal atmosphere, and the challenge of constructing appropriate boundary layer schemes and non-photochemical mechanisms for use in state-of-the-art chemical transport and chemistry–climate models. This review is the result of a workshop of the same title held at the Georgia Institute of Technology in June 2015. The first half of the review summarizes the current literature on NO3-BVOC chemistry, with a particular focus on recent advances in instrumentation and models, and in organic nitrate and secondary organic aerosol (SOA) formation chemistry. Building on this current understanding, the second half of the review outlines impacts of NO3-BVOC chemistry on air quality and climate, and suggests critical research needs to better constrain this interaction to improve the predictive capabilities of atmospheric models.
  • Item
    A new source of methylglyoxal in the aqueous phase
    (München : European Geopyhsical Union, 2016) Rodigast, Maria; Mutzel, Anke; Schindelka, Janine; Herrmann, Hartmut
    Carbonyl compounds are ubiquitous in atmospheric multiphase system participating in gas, particle, and aqueous-phase chemistry. One important compound is methyl ethyl ketone (MEK), as it is detected in significant amounts in the gas phase as well as in cloud water, ice, and rain. Consequently, it can be expected that MEK influences the liquid-phase chemistry. Therefore, the oxidation of MEK and the formation of corresponding oxidation products were investigated in the aqueous phase. Several oxidation products were identified from the oxidation with OH radicals, including 2,3-butanedione, hydroxyacetone, and methylglyoxal. The molar yields were 29.5 % for 2,3-butanedione, 3.0 % for hydroxyacetone, and 9.5 % for methylglyoxal. Since methylglyoxal is often related to the formation of organics in the aqueous phase, MEK should be considered for the formation of aqueous secondary organic aerosol (aqSOA). Based on the experimentally obtained data, a reaction mechanism for the formation of methylglyoxal has been developed and evaluated with a model study. Besides known rate constants, the model contains measured photolysis rate constants for MEK (kp  =  5  ×  10−5 s−1), 2,3-butanedione (kp  =  9  ×  10−6 s−1), methylglyoxal (kp  =  3  ×  10−5 s−1), and hydroxyacetone (kp  =  2  ×  10−5 s−1). From the model predictions, a branching ratio of 60 /40 for primary/secondary H-atom abstraction at the MEK skeleton was found. This branching ratio reproduces the experiment results very well, especially the methylglyoxal formation, which showed excellent agreement. Overall, this study demonstrates MEK as a methylglyoxal precursor compound for the first time.