Search Results

Now showing 1 - 10 of 11
  • Item
    Simulation of atmospheric organic aerosol using its volatility-oxygen-content distribution during the PEGASOS 2012 campaign
    (Katlenburg-Lindau : EGU, 2018) Karnezi, Eleni; Murphy, Benjamin N.; Poulain, Laurent; Herrmann, Hartmut; Wiedensohler, Alfred; Rubach, Florian; Kiendler-Scharr, Astrid; Mentel, Thomas F.; Pandis, Spyros N.
    A lot of effort has been made to understand and constrain the atmospheric aging of the organic aerosol (OA). Different parameterizations of the organic aerosol formation and evolution in the two-dimensional volatility basis set (2D-VBS) framework are evaluated using ground and airborne measurements collected in the 2012 Pan-European Gas AeroSOls-climate interaction Study (PEGASOS) field campaign in the Po Valley (Italy). A number of chemical aging schemes are examined, taking into account various functionalization and fragmentation pathways for biogenic and anthropogenic OA components. Model predictions and measurements, both at the ground and aloft, indicate a relatively oxidized OA with little average diurnal variation. Total OA concentration and O: C ratios are reproduced within experimental error by a number of chemical aging schemes. Anthropogenic secondary OA (SOA) is predicted to contribute 15-25% of the total OA, while SOA from intermediate volatility compound oxidation contributes another 20-35%. Biogenic SOA (bSOA) contributions varied from 15 to 45% depending on the modeling scheme. Primary OA contributed around 5% for all schemes and was comparable to the hydrocarbon-like OA (HOA) concentrations derived from the positive matrix factorization of the aerosol mass spectrometer (PMF-AMS) ground measurements. The average OA and O: C diurnal variation and their vertical profiles showed a surprisingly modest sensitivity to the assumed vaporization enthalpy for all aging schemes. This can be explained by the interplay between the partitioning of the semi-volatile compounds and their gas-phase chemical aging reactions.
  • Item
    Long-term cloud condensation nuclei number concentration, particle number size distribution and chemical composition measurements at regionally representative observatories
    (Katlenburg-Lindau : EGU, 2018) Schmale, Julia; Henning, Silvia; Decesari, Stefano; Henzing, Bas; Keskinen, Helmi; Sellegri, Karine; Ovadnevaite, Jurgita; Pöhlker, Mira L.; Brito, Joel; Bougiatioti, Aikaterini; Kristensson, Adam; Kalivitis, Nikos; Stavroulas, Iasonas; Carbone, Samara; Jefferson, Anne; Park, Minsu; Schlag, Patrick; Iwamoto, Yoko; Aalto, Pasi; Äijälä, Mikko; Bukowiecki, Nicolas; Ehn, Mikael; Frank, Göran; Fröhlich, Roman; Frumau, Arnoud; Herrmann, Erik; Herrmann, Hartmut; Holzinger, Rupert; Kos, Gerard; Kulmala, Markku; Mihalopoulos, Nikolaos; Nenes, Athanasios; O'Dowd, Colin; Petäjä, Tuukka; Picard, David; Pöhlker, Christopher; Pöschl, Ulrich; Poulain, Laurent; Prévôt, André Stephan Henry; Swietlicki, Erik; Andreae, Meinrat O.; Artaxo, Paulo; Wiedensohler, Alfred; Ogren, John; Matsuki, Atsushi; Yum, Seong Soo; Stratmann, Frank; Baltensperger, Urs; Gysel, Martin
    Aerosol-cloud interactions (ACI) constitute the single largest uncertainty in anthropogenic radiative forcing. To reduce the uncertainties and gain more confidence in the simulation of ACI, models need to be evaluated against observations, in particular against measurements of cloud condensation nuclei (CCN). Here we present a data set - ready to be used for model validation - of long-term observations of CCN number concentrations, particle number size distributions and chemical composition from 12 sites on 3 continents. Studied environments include coastal background, rural background, alpine sites, remote forests and an urban surrounding. Expectedly, CCN characteristics are highly variable across site categories. However, they also vary within them, most strongly in the coastal background group, where CCN number concentrations can vary by up to a factor of 30 within one season. In terms of particle activation behaviour, most continental stations exhibit very similar activation ratios (relative to particles 20nm) across the range of 0.1 to 1.0% supersaturation. At the coastal sites the transition from particles being CCN inactive to becoming CCN active occurs over a wider range of the supersaturation spectrum. Several stations show strong seasonal cycles of CCN number concentrations and particle number size distributions, e.g. at Barrow (Arctic haze in spring), at the alpine stations (stronger influence of polluted boundary layer air masses in summer), the rain forest (wet and dry season) or Finokalia (wildfire influence in autumn). The rural background and urban sites exhibit relatively little variability throughout the year, while short-term variability can be high especially at the urban site. The average hygroscopicity parameter, calculated from the chemical composition of submicron particles was highest at the coastal site of Mace Head (0.6) and lowest at the rain forest station ATTO (0.2-0.3). We performed closure studies based on -Köhler theory to predict CCN number concentrations. The ratio of predicted to measured CCN concentrations is between 0.87 and 1.4 for five different types of . The temporal variability is also well captured, with Pearson correlation coefficients exceeding 0.87. Information on CCN number concentrations at many locations is important to better characterise ACI and their radiative forcing. But long-term comprehensive aerosol particle characterisations are labour intensive and costly. Hence, we recommend operating migrating-CCNCs to conduct collocated CCN number concentration and particle number size distribution measurements at individual locations throughout one year at least to derive a seasonally resolved hygroscopicity parameter. This way, CCN number concentrations can only be calculated based on continued particle number size distribution information and greater spatial coverage of long-term measurements can be achieved.
  • Item
    High number concentrations of transparent exopolymer particles in ambient aerosol particles and cloud water – a case study at the tropical Atlantic Ocean
    (Katlenburg-Lindau : EGU, 2022) van Pinxteren, Manuela; Robinson, Tiera-Brandy; Zeppenfeld, Sebastian; Gong, Xianda; Bahlmann, Enno; Fomba, Khanneh Wadinga; Triesch, Nadja; Stratmann, Frank; Wurl, Oliver; Engel, Anja; Wex, Heike; Herrmann, Hartmut
    Transparent exopolymer particles (TEPs) exhibit the properties of gels and are ubiquitously found in the world oceans. TEPs may enter the atmosphere as part of sea-spray aerosol. Here, we report number concentrations of TEPs with a diameter >4.5 μm, hence covering a part of the supermicron particle range, in ambient aerosol and cloud water samples from the tropical Atlantic Ocean as well as in generated aerosol particles using a plunging waterfall tank that was filled with the ambient seawater. The ambient TEP concentrations ranged between 7×102 and 3×104 #TEP m-3 in the aerosol particles and correlations with sodium (Na+) and calcium (Ca2+) (R2=0.5) suggested some contribution via bubble bursting. Cloud water TEP concentrations were between 4×106 and 9×106 #TEP L-1 and, according to the measured cloud liquid water content, corresponding to equivalent air concentrations of 2-4 × 103 #TEP m-3. Based on Na+ concentrations in seawater and in the atmosphere, the enrichment factors for TEPs in the atmosphere were calculated. The tank-generated TEPs were enriched by a factor of 50 compared with seawater and, therefore, in-line with published enrichment factors for supermicron organic matter in general and TEPs specifically. TEP enrichment in the ambient atmosphere was on average 1×103 in cloud water and 9×103 in ambient aerosol particles and therefore about two orders of magnitude higher than the corresponding enrichment from the tank study. Such high enrichment of supermicron particulate organic constituents in the atmosphere is uncommon and we propose that atmospheric TEP concentrations resulted from a combination of enrichment during bubble bursting transfer from the ocean and a secondary TEP in-situ formation in atmospheric phases. Abiotic in-situ formation might have occurred from aqueous reactions of dissolved organic precursors that were present in particle and cloud water samples, whereas biotic formation involves bacteria, which were abundant in the cloud water samples. The ambient TEP number concentrations were two orders of magnitude higher than recently reported ice nucleating particle (INP) concentrations measured at the same location. As TEPs likely possess good properties to act as INPs, in future experiments it is worth studying if a certain part of TEPs contributes a fraction of the biogenic INP population.
  • Item
    A quantification method for heat-decomposable methylglyoxal oligomers and its application on 1,3,5-trimethylbenzene SOA
    (Katlenburg-Lindau : EGU, 2017) Rodigast, Maria; Mutzel, Anke; Herrmann, Hartmut
    Methylglyoxal forms oligomeric compounds in the atmospheric aqueous particle phase, which could establish a significant contribution to the formation of aqueous secondary organic aerosol (aqSOA). Thus far, no suitable method for the quantification of methylglyoxal oligomers is available despite the great effort spent for structure elucidation. In the present study a simplified method was developed to quantify heat-decomposable methylglyoxal oligomers as a sum parameter. The method is based on the thermal decomposition of oligomers into methylglyoxal monomers. Formed methylglyoxal monomers were detected using PFBHA (O-(2,3,4,5,6-pentafluorobenzyl)hydroxylamine hydrochloride) derivatisation and gas chromatography-mass spectrometry (GC/MS) analysis. The method development was focused on the heating time (varied between 15 and 48h), pH during the heating process (pH Combining double low line 1-7), and heating temperature (50, 100°C). The optimised values of these method parameters are presented. The developed method was applied to quantify heat-decomposable methylglyoxal oligomers formed during the OH-radical oxidation of 1,3,5-trimethylbenzene (TMB) in the Leipzig aerosol chamber (LEipziger AerosolKammer, LEAK). Oligomer formation was investigated as a function of seed particle acidity and relative humidity. A fraction of heat-decomposable methylglyoxal oligomers of up to 8% in the produced organic particle mass was found, highlighting the importance of those oligomers formed solely by methylglyoxal for SOA formation. Overall, the present study provides a new and suitable method for quantification of heat-decomposable methylglyoxal oligomers in the aqueous particle phase.
  • Item
    Aerosol activation characteristics and prediction at the central European ACTRIS research station of Melpitz, Germany
    (Katlenburg-Lindau : EGU, 2022) Wang, Yuan; Henning, Silvia; Poulain, Laurent; Lu, Chunsong; Stratmann, Frank; Wang, Yuying; Niu, Shengjie; Pöhlker, Mira L.; Herrmann, Hartmut; Wiedensohler, Alfred
    Understanding aerosol particle activation is essential for evaluating aerosol indirect effects (AIEs) on climate. Long-term measurements of aerosol particle activation help to understand the AIEs and narrow down the uncertainties of AIEs simulation. However, they are still scarce. In this study, more than 4 years of comprehensive aerosol measurements were utilized at the central European research station of Melpitz, Germany, to gain insight into the aerosol particle activation and provide recommendations on improving the prediction of number concentration of cloud condensation nuclei (CCN, NCCN). (1) The overall CCN activation characteristics at Melpitz are provided. As supersaturation (SS) increases from 0.1% to 0.7%, the median NCCN increases from 399 to 2144cm-3, which represents 10% to 48% of the total particle number concentration with a diameter range of 10-800nm, while the median hygroscopicity factor (κ) and critical diameter (Dc) decrease from 0.27 to 0.19 and from 176 to 54nm, respectively. (2) Aerosol particle activation is highly variable across seasons, especially at low-SS conditions. At SSCombining double low line0.1%, the median NCCN and activation ratio (AR) in winter are 1.6 and 2.3 times higher than the summer values, respectively. (3) Both κ and the mixing state are size-dependent. As the particle diameter (Dp) increases, κ increases at Dp of 1/440 to 100nm and almost stays constant at Dp of 100 to 200nm, whereas the degree of the external mixture keeps decreasing at Dp of 1/440 to 200nm. The relationships of κ vs. Dp and degree of mixing vs. Dp were both fitted well by a power-law function. (4) Size-resolved κ improves the NCCN prediction. We recommend applying the κ-Dp power-law fit for NCCN prediction at Melpitz, which performs better than using the constant κ of 0.3 and the κ derived from particle chemical compositions and much better than using the NCCN (AR) vs. SS relationships. The κ-Dp power-law fit measured at Melpitz could be applied to predict NCCN for other rural regions. For the purpose of improving the prediction of NCCN, long-term monodisperse CCN measurements are still needed to obtain the κ-Dp relationships for different regions and their seasonal variations.
  • Item
    The impact of biomass burning and aqueous-phase processing on air quality: A multi-year source apportionment study in the Po Valley, Italy
    (Katlenburg-Lindau : EGU, 2020) Paglione, Marco; Gilardoni, Stefania; Rinaldi, Matteo; Decesari, Stefano; Zanca, Nicola; Sandrini, Silvia; Giulianelli, Lara; Bacco, Dimitri; Ferrari, Silvia; Poluzzi, Vanes; Scotto, Fabiana; Trentini, Arianna; Poulain, Laurent; Herrmann, Hartmut; Wiedensohler, Alfred; Canonaco, Francesco; Prévôt, André S.H.; Massoli, Paola; Carbone, Claudio; Facchini, Maria Cristina; Fuzzi, Sandro
    The Po Valley (Italy) is a well-known air quality hotspot characterized by particulate matter (PM) levels well above the limit set by the European Air Quality Directive and by the World Health Organization, especially during the colder season. In the framework of Emilia-Romagna regional project "Supersito", the southern Po Valley submicron aerosol chemical composition was characterized by means of high-resolution aerosol mass spectroscopy (HR-AMS) with the specific aim of organic aerosol (OA) characterization and source apportionment. Eight intensive observation periods (IOPs) were carried out over 4 years (from 2011 to 2014) at two different sites (Bologna, BO, urban background, and San Pietro Capofiume, SPC, rural background), to characterize the spatial variability and seasonality of the OA sources, with a special focus on the cold season. On the multi-year basis of the study, the AMS observations show that OA accounts for averages of 45 ± 8 % (ranging from 33 % to 58 %) and 46 ± 7 % (ranging from 36 % to 50 %) of the total non-refractory submicron particle mass (PM1-NR) at the urban and rural sites, respectively. Primary organic aerosol (POA) comprises biomass burning (23±13 % of OA) and fossil fuel (12±7 %) contributions with a marked seasonality in concentration. As expected, the biomass burning contribution to POA is more significant at the rural site (urban / rural concentration ratio of 0.67), but it is also an important source of POA at the urban site during the cold season, with contributions ranging from 14 % to 38 % of the total OA mass. Secondary organic aerosol (SOA) contributes to OA mass to a much larger extent than POA at both sites throughout the year (69 ± 16 % and 83 ± 16 % at the urban and rural sites, respectively), with important implications for public health. Within the secondary fraction of OA, the measurements highlight the importance of biomass burning aging products during the cold season, even at the urban background site. This biomass burning SOA fraction represents 14 %-44 % of the total OA mass in the cold season, indicating that in this region a major contribution of combustion sources to PM mass is mediated by environmental conditions and atmospheric reactivity. © 2020 Author(s).
  • Item
    The acidity of atmospheric particles and clouds
    (Katlenburg-Lindau : EGU, 2020) Pye, Havala O.T.; Nenes, Athanasios; Alexander, Becky; Ault, Andrew P.; Barth, Mary C.; Clegg, Simon L.; Collett Jr, Jeffrey L.; Fahey, Kathleen M.; Hennigan, Christopher J.; Herrmann, Hartmut; Kanakidou, Maria; Kelly, James T.; Ku, I-Ting; McNeill, V. Faye; Riemer, Nicole; Schaefer, Thomas; Shi, Guoliang; Tilgner, Andreas; Walker, John T.; Wang, Tao; Weber, Rodney; Xing, Jia; Zaveri, Rahul A.; Zuend, Andreas
    Acidity, defined as pH, is a central component of aqueous chemistry. In the atmosphere, the acidity of condensed phases (aerosol particles, cloud water, and fog droplets) governs the phase partitioning of semivolatile gases such as HNO3, NH3, HCl, and organic acids and bases as well as chemical reaction rates. It has implications for the atmospheric lifetime of pollutants, deposition, and human health. Despite its fundamental role in atmospheric processes, only recently has this field seen a growth in the number of studies on particle acidity. Even with this growth, many fine-particle pH estimates must be based on thermodynamic model calculations since no operational techniques exist for direct measurements. Current information indicates acidic fine particles are ubiquitous, but observationally constrained pH estimates are limited in spatial and temporal coverage. Clouds and fogs are also generally acidic, but to a lesser degree than particles, and have a range of pH that is quite sensitive to anthropogenic emissions of sulfur and nitrogen oxides, as well as ambient ammonia. Historical measurements indicate that cloud and fog droplet pH has changed in recent decades in response to controls on anthropogenic emissions, while the limited trend data for aerosol particles indicate acidity may be relatively constant due to the semivolatile nature of the key acids and bases and buffering in particles. This paper reviews and synthesizes the current state of knowledge on the acidity of atmospheric condensed phases, specifically particles and cloud droplets. It includes recommendations for estimating acidity and pH, standard nomenclature, a synthesis of current pH estimates based on observations, and new model calculations on the local and global scale. © 2020 Author(s).
  • Item
    Source apportionment of the organic aerosol over the Atlantic Ocean from 53° N to 53° S: Significant contributions from marine emissions and long-range transport
    (Katlenburg-Lindau : EGU, 2018) Huang, Shan; Wu, Zhijun; Poulain, Laurent; van Pinxteren, Manuela; Merkel, Maik; Assmann, Denise; Herrmann, Hartmut; Wiedensohler, Alfred
    Marine aerosol particles are an important part of the natural aerosol systems and might have a significant impact on the global climate and biological cycle. It is widely accepted that truly pristine marine conditions are difficult to find over the ocean. However, the influence of continental and anthropogenic emissions on the marine boundary layer (MBL) aerosol is still less understood and non-quantitative, causing uncertainties in the estimation of the climate effect of marine aerosols. This study presents a detailed chemical characterization of the MBL aerosol as well as the source apportionment of the organic aerosol (OA) composition. The data set covers the Atlantic Ocean from 53∘ N to 53∘ S, based on four open-ocean cruises in 2011 and 2012. The aerosol particle composition was measured with a high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS), which indicated that sub-micrometer aerosol particles over the Atlantic Ocean are mainly composed of sulfates (50 % of the particle mass concentration), organics (21 %) and sea salt (12 %). OA has been apportioned into five factors, including three factors linked to marine sources and two with continental and/or anthropogenic origins. The marine oxygenated OA (MOOA, 16 % of the total OA mass) and marine nitrogen-containing OA (MNOA, 16 %) are identified as marine secondary products with gaseous biogenic precursors dimethyl sulfide (DMS) or amines. Marine hydrocarbon-like OA (MHOA, 19 %) was attributed to the primary emissions from the Atlantic Ocean. The factor for the anthropogenic oxygenated OA (Anth-OOA, 19 %) is related to continental long-range transport. Represented by the combustion oxygenated OA (Comb-OOA), aged combustion emissions from maritime traffic and wild fires in Africa contributed, on average, a large fraction to the total OA mass (30 %). This study provides the important finding that long-range transport was found to contribute averagely 49 % of the submicron OA mass over the Atlantic Ocean. This is almost equal to that from marine sources (51 %). Furthermore, a detailed latitudinal distribution of OA source contributions showed that DMS oxidation contributed markedly to the OA over the South Atlantic during spring, while continental-related long-range transport largely influenced the marine atmosphere near Europe and western and central Africa (15∘ N to 15∘ S). In addition, supported by a solid correlation between marine tracer methanesulfonic acid (MSA) and the DMS-oxidation OA (MOOA, R2>0.85), this study suggests that the DMS-related secondary organic aerosol (SOA) over the Atlantic Ocean could be estimated by MSA and a scaling factor of 1.79, especially in spring.
  • Item
    Marine organic matter in the remote environment of the Cape Verde islands-an introduction and overview to the MarParCloud campaign
    (Katlenburg-Lindau : EGU, 2020) van Pinxteren, Manuela; Fomba, KhannehWadinga; Triesch, Nadja; Stolle, Christian; Wurl, Oliver; Bahlmann, Enno; Gong, Xianda; Voigtländer, Jens; Wex, Heike; Robinson, Tiera-Brandy; Barthel, Stefan; Zeppenfeld, Sebastian; Hoffmann, Erik Hans; Roveretto, Marie; Li, Chunlin; Grosselin, Benoit; Daële, Veronique; Senf, Fabian; van Pinxteren, Dominik; Manzi, Malena; Zabalegui, Nicolás; Frka, Sanja; Gašparović, Blaženka; Pereira, Ryan; Li, Tao; Wen, Liang; Li, Jiarong; Zhu, Chao; Chen, Hui; Chen, Jianmin; Fiedler, Björn; von Tümpling, Wolf; Read, Katie Alana; Punjabi, Shalini; Lewis, Alastair Charles; Hopkins, James Roland; Carpenter, Lucy Jane; Peeken, Ilka; Rixen, Tim; Schulz-Bull, Detlef; Mong, María Eugenia; Mellouki, Abdelwahid; George, Christian; Stratmann, Frank; Herrmann, Hartmut
    The project MarParCloud (Marine biological production, organic aerosol Particles and marine Clouds: a process chain) aims to improve our understanding of the genesis, modification and impact of marine organic matter (OM) from its biological production, to its export to marine aerosol particles and, finally, to its ability to act as ice-nucleating particles (INPs) and cloud condensation nuclei (CCN). A field campaign at the Cape Verde Atmospheric Observatory (CVAO) in the tropics in September-October 2017 formed the core of this project that was jointly performed with the project MARSU (MARine atmospheric Science Unravelled). A suite of chemical, physical, biological and meteorological techniques was applied, and comprehensive measurements of bulk water, the sea surface microlayer (SML), cloud water and ambient aerosol particles collected at a ground-based and a mountain station took place. Key variables comprised the chemical characterization of the atmospherically relevant OM components in the ocean and the atmosphere as well as measurements of INPs and CCN. Moreover, bacterial cell counts, mercury species and trace gases were analyzed. To interpret the results, the measurements were accompanied by various auxiliary parameters such as air mass back-trajectory analysis, vertical atmospheric profile analysis, cloud observations and pigment measurements in seawater. Additional modeling studies supported the experimental analysis. During the campaign, the CVAO exhibited marine air masses with low and partly moderate dust influences. The marine boundary layer was well mixed as indicated by an almost uniform particle number size distribution within the boundary layer. Lipid biomarkers were present in the aerosol particles in typical concentrations of marine background conditions. Accumulation-and coarse-mode particles served as CCN and were efficiently transferred to the cloud water. The ascent of ocean-derived compounds, such as sea salt and sugar-like compounds, to the cloud level, as derived from chemical analysis and atmospheric transfer modeling results, denotes an influence of marine emissions on cloud formation. Organic nitrogen compounds (free amino acids) were enriched by several orders of magnitude in submicron aerosol particles and in cloud water compared to seawater. However, INP measurements also indicated a significant contribution of other non-marine sources to the local INP concentration, as (biologically active) INPs were mainly present in supermicron aerosol particles that are not suggested to undergo strong enrichment during ocean-atmosphere transfer. In addition, the number of CCN at the supersaturation of 0.30 % was about 2.5 times higher during dust periods compared to marine periods. Lipids, sugar-like compounds, UV-absorbing (UV: ultraviolet) humic-like substances and low-molecularweight neutral components were important organic compounds in the seawater, and highly surface-active lipids were enriched within the SML. The selective enrichment of specific organic compounds in the SML needs to be studied in further detail and implemented in an OM source function for emission modeling to better understand transfer patterns, the mechanisms of marine OM transformation in the atmosphere and the role of additional sources. In summary, when looking at particulate mass, we see oceanic compounds transferred to the atmospheric aerosol and to the cloud level, while from a perspective of particle number concentrations, sea spray aerosol (i.e., primary marine aerosol) contributions to both CCN and INPs are rather limited. © Author(s) 2020.
  • Item
    Treatment of non-ideality in the SPACCIM multiphase model-Part 2: Impacts on the multiphase chemical processing in deliquesced aerosol particles
    (Katlenburg-Lindau : EGU, 2020) Jhony Rusumdar, Ahmad; Tilgner, Andreas; Wolke, Ralf; Herrmann, Hartmut
    Tropospheric deliquesced particles are characterised by concentrated non-ideal solutions ("aerosol liquid water" or ALW) that can affect the occurring multiphase chemistry. However, such non-ideal solution effects have generally not yet been considered in and investigated by current complex multiphase chemistry models in an adequate way. Therefore, the present study aims at accessing the impact of non-ideality on multiphase chemical processing in concentrated aqueous aerosols. Simulations with the multiphase chemistry model (SPACCIM-SpactMod) are performed under different environmental and microphysical conditions with and without a treatment of non-ideal solutions in order to assess its impact on aqueous-phase chemical processing. The present study shows that activity coefficients of inorganic ions are often below unity under 90% RH-deliquesced aerosol conditions and that most uncharged organic compounds exhibit activity coefficient values of around or even above unity. Due to this behaviour, model studies have revealed that the inclusion of non-ideality considerably affects the multiphase chemical processing of transition metal ions (TMIs), oxidants, and related chemical subsystems such as organic chemistry. In detail, both the chemical formation and oxidation rates of Fe(II) are substantially lowered by a factor of 2.8 in the non-ideal base case compared to the ideal case. The reduced Fe(II) processing in the non-ideal base case, including lowered chemical rates of the Fenton reaction (70 %), leads to a reduced processing of HOx=HOy under deliquesced aerosol conditions. Consequently, higher multiphase H2O2 concentrations (larger by a factor of 3.1) and lower aqueous-phase OH concentrations (lower by a factor of 4) are modelled during non-cloud periods. For H2O2, a comparison of the chemical reaction rates reveals that the most important sink, the reaction with HSO3 , contributes with a 40% higher rate in the non-ideal base case than in the ideal case, leading to more efficient sulfate formation. On the other hand, the chemical formation rates of the OH radical are about 50% lower in the non-ideal base case than in the ideal case, leading to lower degradation rates of organic aerosol components. Thus, considering non-ideality influences the chemical processing and the concentrations of organic compounds under deliquesced particle conditions in a compound-specific manner. For example, the reduced oxidation budget under deliquesced particle conditions leads to both increased and decreased concentration levels, e.g. of important C2=C3 carboxylic acids. For oxalic acid, the present study demonstrates that the non-ideality treatment enables more realistic predictions of high oxalate concentrations than observed under ambient highly polluted conditions. Furthermore, the simulations imply that lower humidity conditions, i.e. more concentrated solutions, might promote higher oxalic acid concentration levels in aqueous aerosols due to differently affected formation and degradation processes. © 2020 Copernicus GmbH. All rights reserved.