Search Results

Now showing 1 - 2 of 2
  • Item
    A quantification method for heat-decomposable methylglyoxal oligomers and its application on 1,3,5-trimethylbenzene SOA
    (Katlenburg-Lindau : EGU, 2017) Rodigast, Maria; Mutzel, Anke; Herrmann, Hartmut
    Methylglyoxal forms oligomeric compounds in the atmospheric aqueous particle phase, which could establish a significant contribution to the formation of aqueous secondary organic aerosol (aqSOA). Thus far, no suitable method for the quantification of methylglyoxal oligomers is available despite the great effort spent for structure elucidation. In the present study a simplified method was developed to quantify heat-decomposable methylglyoxal oligomers as a sum parameter. The method is based on the thermal decomposition of oligomers into methylglyoxal monomers. Formed methylglyoxal monomers were detected using PFBHA (O-(2,3,4,5,6-pentafluorobenzyl)hydroxylamine hydrochloride) derivatisation and gas chromatography-mass spectrometry (GC/MS) analysis. The method development was focused on the heating time (varied between 15 and 48h), pH during the heating process (pH Combining double low line 1-7), and heating temperature (50, 100°C). The optimised values of these method parameters are presented. The developed method was applied to quantify heat-decomposable methylglyoxal oligomers formed during the OH-radical oxidation of 1,3,5-trimethylbenzene (TMB) in the Leipzig aerosol chamber (LEipziger AerosolKammer, LEAK). Oligomer formation was investigated as a function of seed particle acidity and relative humidity. A fraction of heat-decomposable methylglyoxal oligomers of up to 8% in the produced organic particle mass was found, highlighting the importance of those oligomers formed solely by methylglyoxal for SOA formation. Overall, the present study provides a new and suitable method for quantification of heat-decomposable methylglyoxal oligomers in the aqueous particle phase.
  • Item
    The acidity of atmospheric particles and clouds
    (Katlenburg-Lindau : EGU, 2020) Pye, Havala O.T.; Nenes, Athanasios; Alexander, Becky; Ault, Andrew P.; Barth, Mary C.; Clegg, Simon L.; Collett Jr, Jeffrey L.; Fahey, Kathleen M.; Hennigan, Christopher J.; Herrmann, Hartmut; Kanakidou, Maria; Kelly, James T.; Ku, I-Ting; McNeill, V. Faye; Riemer, Nicole; Schaefer, Thomas; Shi, Guoliang; Tilgner, Andreas; Walker, John T.; Wang, Tao; Weber, Rodney; Xing, Jia; Zaveri, Rahul A.; Zuend, Andreas
    Acidity, defined as pH, is a central component of aqueous chemistry. In the atmosphere, the acidity of condensed phases (aerosol particles, cloud water, and fog droplets) governs the phase partitioning of semivolatile gases such as HNO3, NH3, HCl, and organic acids and bases as well as chemical reaction rates. It has implications for the atmospheric lifetime of pollutants, deposition, and human health. Despite its fundamental role in atmospheric processes, only recently has this field seen a growth in the number of studies on particle acidity. Even with this growth, many fine-particle pH estimates must be based on thermodynamic model calculations since no operational techniques exist for direct measurements. Current information indicates acidic fine particles are ubiquitous, but observationally constrained pH estimates are limited in spatial and temporal coverage. Clouds and fogs are also generally acidic, but to a lesser degree than particles, and have a range of pH that is quite sensitive to anthropogenic emissions of sulfur and nitrogen oxides, as well as ambient ammonia. Historical measurements indicate that cloud and fog droplet pH has changed in recent decades in response to controls on anthropogenic emissions, while the limited trend data for aerosol particles indicate acidity may be relatively constant due to the semivolatile nature of the key acids and bases and buffering in particles. This paper reviews and synthesizes the current state of knowledge on the acidity of atmospheric condensed phases, specifically particles and cloud droplets. It includes recommendations for estimating acidity and pH, standard nomenclature, a synthesis of current pH estimates based on observations, and new model calculations on the local and global scale. © 2020 Author(s).