Search Results

Now showing 1 - 2 of 2
  • Item
    Influence of biomass burning on mixing state of sub-micron aerosol particles in the North China Plain
    (Oxford [u.a.] : Elsevier, 2017) Kecorius, Simonas; Ma, Nan; Teich, Monique; van Pinxteren, Dominik; Zhang, Shenglan; Gröβ, Johannes; Spindler, Gerald; Müller, Konrad; Iinuma, Yoshiteru; Hu, Min; Herrmann, Hartmut; Wiedensohler, Alfred
    Particulate emissions from crop residue burning decrease the air quality as well as influence aerosol radiative properties on a regional scale. The North China Plain (NCP) is known for the large scale biomass burning (BB) of field residues, which often results in heavy haze pollution episodes across the region. We have been able to capture a unique BB episode during the international CAREBeijing-NCP intensive field campaign in Wangdu in the NCP (38.6°N, 115.2°E) from June to July 2014. It was found that aerosol particles originating from this BB event showed a significantly different mixing state compared with clean and non-BB pollution episodes. BB originated particles showed a narrower probability density function (PDF) of shrink factor (SF). And the maximum was found at shrink factor of 0.6, which is higher than in other episodes. The non-volatile particle number fraction during the BB episode decreased to 3% and was the lowest measured value compared to all other predefined episodes. To evaluate the influence of particle mixing state on aerosol single scattering albedo (SSA), SSA at different RHs was simulated using the measured aerosol physical-chemical properties. The differences between the calculated SSA for biomass burning, clean and pollution episodes are significant, meaning that the variation of SSA in different pollution conditions needs to be considered in the evaluation of aerosol direct radiative effects in the NCP. And the calculated SSA was found to be quite sensitive on the mixing state of BC, especially at low-RH condition. The simulated SSA was also compared with the measured values. For all the three predefined episodes, the measured SSA are very close to the calculated ones with assumed mixing states of homogeneously internal and core-shell internal mixing, indicating that both of the conception models are appropriate for the calculation of ambient SSA in the NCP.
  • Item
    The influence of impactor size cut-off shift caused by hygroscopic growth on particulate matter loading and composition measurements
    (Oxford [u.a.] : Elsevier, 2018) Chen, Ying; Wild, Oliver; Wang, Yu; Ran, Liang; Teich, Monique; Größ, Johannes; Wang, Lina; Spindler, Gerald; Herrmann, Hartmut; van Pinxteren, Dominik; McFiggans, Gordon; Wiedensohler, Alfred
    The mass loading and composition of atmospheric particles are important in determining their climate and health effects, and are typically measured by filter sampling. However, particle sampling under ambient conditions can lead to a shift in the size cut-off threshold induced by hygroscopic growth, and the influence of this on measurement of particle loading and composition has not been adequately quantified. Here, we propose a method to assess this influence based on κ-Köhler theory. A global perspective is presented based on previously reported annual climatological values of hygroscopic properties, meteorological parameters and particle volume size distributions. Measurements at background sites in Europe may be more greatly influenced by the cut-off shift than those from other continents, with a median influence of 10–20% on the total mass of sampled particles. However, the influence is generally much smaller (<7%) at urban sites, and is negligible for dust and particles in the Arctic. Sea-salt particles experience the largest influence (median value ∼50%), resulting from their large size, high hygroscopicity and the high relative humidity (RH) in marine air-masses. We estimate a difference of ∼30% in this influence of sea-salt particle sampling between relatively dry (RH = 60%) and humid (RH = 90%) conditions. Given the variation in the cut-off shift in different locations and at different times, a consistent consideration of this influence using the approach we introduce here is critical for observational studies of the long-term and spatial distribution of particle loading and composition, and crucial for robust validation of aerosol modules in modelling studies.