Search Results

Now showing 1 - 10 of 19
  • Item
    Generalized Nash equilibrium problems with partial differential operators: Theory, algorithms, and risk aversion
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2019) Gahururu, Deborah; Hintermüller, Michael; Stengl, Steven-Marian; Surowiec, Thomas M.
    PDE-constrained (generalized) Nash equilibrium problems (GNEPs) are considered in a deterministic setting as well as under uncertainty. This includes a study of deterministic GNEPs with nonlinear and/or multivalued operator equations as forward problems and PDE-constrained GNEPs with uncertain data. The deterministic nonlinear problems are analyzed using the theory of generalized convexity for set-valued operators, and a variational approximation approach is proposed. The stochastic setting includes a detailed overview of the recently developed theory and algorithms for risk-averse PDE-constrained optimization problems. These new results open the way to a rigorous study of stochastic PDE-constrained GNEPs.
  • Item
    Adaptive regularization for image reconstruction from subsampled data
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2017) Hintermüller, Michael; Langer, Andreas; Rautenberg, Carlos N.; Wu, Tao
    Choices of regularization parameters are central to variational methods for image restoration. In this paper, a spatially adaptive (or distributed) regularization scheme is developed based on localized residuals, which properly balances the regularization weight between regions containing image details and homogeneous regions. Surrogate iterative methods are employed to handle given subsampled data in transformed domains, such as Fourier or wavelet data. In this respect, this work extends the spatially variant regularization technique previously established in [15], which depends on the fact that the given data are degraded images only. Numerical experiments for the reconstruction from partial Fourier data and for wavelet inpainting prove the efficiency of the newly proposed approach.
  • Item
    A function space framework for structural total variation regularization with applications in inverse problems
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2017) Hintermüller, Michael; Holler, Martin; Papafitsoros, Kostas
    In this work, we introduce a function space setting for a wide class of structural/weighted total variation (TV) regularization methods motivated by their applications in inverse problems. In particular, we consider a regularizer that is the appropriate lower semi-continuous envelope (relaxation) of a suitable total variation type functional initially defined for sufficiently smooth functions. We study examples where this relaxation can be expressed explicitly, and we also provide refinements for weighted total variation for a wide range of weights. Since an integral characterization of the relaxation in function space is, in general, not always available, we show that, for a rather general linear inverse problems setting, instead of the classical Tikhonov regularization problem, one can equivalently solve a saddle-point problem where no a priori knowledge of an explicit formulation of the structural TV functional is needed. In particular, motivated by concrete applications, we deduce corresponding results for linear inverse problems with norm and Poisson log-likelihood data discrepancy terms. Finally, we provide proof-of-concept numerical examples where we solve the saddle-point problem for weighted TV denoising as well as for MR guided PET image reconstruction.
  • Item
    Optimal control of geometric partial differential equations
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2019) Hintermüller, Michael; Keil, Tobias
    Optimal control problems for geometric (evolutionary) partial differential inclusions are considered. The focus is on problems which, in addition to the nonlinearity due to geometric evolution, contain optimization theoretic challenges because of non-smoothness. The latter might stem from energies containing non-smooth constituents such as obstacle-type potentials or terms modeling, e.g., pinning phenomena in microfluidics. Several techniques to remedy the resulting constraint degeneracy when deriving stationarity conditions are presented. A particular focus is on Yosida-type mollifications approximating the original degenerate problem by a sequence of nondegenerate nonconvex optimal control problems. This technique is also the starting point for the development of numerical solution schemes. In this context, also dual-weighted residual based error estimates are addressed to facilitate an adaptive mesh refinement. Concerning the underlying state model, sharp and diffuse interface formulations are discussed. While the former always allows for accurately tracing interfacial motion, the latter model may be dictated by the underlying physical phenomenon, where near the interface mixed phases may exist, but it may also be used as an approximate model for (sharp) interface motion. In view of the latter, (sharp interface) limits of diffuse interface models are addressed. For the sake of presentation, this exposition confines itself to phase field type diffuse interface models and, moreover, develops the optimal control of either of the two interface models along model applications. More precisely, electro-wetting on dielectric is used in the sharp interface context, and the control of multiphase fluids involving spinodal decomposition highlights the phase field technique. Mathematically, the former leads to a Hele-Shaw flow with geometric boundary conditions involving a complementarity system due to contact line pinning, and the latter gives rise to a Cahn-Hilliard Navier-Stokes model including a non-smooth obstacle type potential leading to a variational inequality constraint.
  • Item
    A Bayesian approach to parameter identification in gas networks
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2018) Hajian, Soheil; Hintermüller, Michael; Schillings, Claudia; Strogies, Nikolai
    The inverse problem of identifying the friction coefficient in an isothermal semilinear Euler system is considered. Adopting a Bayesian approach, the goal is to identify the distribution of the quantity of interest based on a finite number of noisy measurements of the pressure at the boundaries of the domain. First well-posedness of the underlying non-linear PDE system is shown using semigroup theory, and then Lipschitz continuity of the solution operator with respect to the friction coefficient is established. Based on the Lipschitz property, well-posedness of the resulting Bayesian inverse problem for the identification of the friction coefficient is inferred. Numerical tests for scalar and distributed parameters are performed to validate the theoretical results.
  • Item
    A class of second-order geometric quasilinear hyperbolic PDEs and their application in imaging science
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2019) Dong, Guozhi; Hintermüller, Michael; Zhang, Ye
    In this paper, we study damped second-order dynamics, which are quasilinear hyperbolic partial differential equations (PDEs). This is inspired by the recent development of second-order damping systems for accelerating energy decay of gradient flows. We concentrate on two equations: one is a damped second-order total variation flow, which is primarily motivated by the application of image denoising; the other is a damped second-order mean curvature flow for level sets of scalar functions, which is related to a non-convex variational model capable of correcting displacement errors in image data (e.g. dejittering). For the former equation, we prove the existence and uniqueness of the solution. For the latter, we draw a connection between the equation and some second-order geometric PDEs evolving the hypersurfaces which are described by level sets of scalar functions, and show the existence and uniqueness of the solution for a regularized version of the equation. The latter is used in our algorithmic development. A general algorithm for numerical discretization of the two nonlinear PDEs is proposed and analyzed. Its efficiency is demonstrated by various numerical examples, where simulations on the behavior of solutions of the new equations and comparisons with first-order flows are also documented.
  • Item
    Duality results and regularization schemes for Prandtl-Reuss perfect plasticity
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2017) Hintermüller, Michael; Rösel, Simon
    We consider the time-discretized problem of the quasi-static evolution problem in perfect plasticity posed in a non-reflexive Banach space and we derive an equivalent version in a reflexive Banach space. A primal-dual stabilization scheme is shown to be consistent with the initial problem. As a consequence, not only stresses, but also displacement and strains are shown to converge to a solution of the original problem in a suitable topology. This scheme gives rise to a well-defined Fenchel dual problem which is a modification of the usual stress problem in perfect plasticity. The dual problem has a simpler structure and turns out to be well-suited for numerical purposes. For the corresponding subproblems an efficient algorithmic approach in the infinite-dimensional setting based on the semismooth Newton method is proposed.
  • Item
    Simulation and control of a nonsmooth Cahn--Hilliard Navier--Stokes system with variable fluid densities
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2019) Gräßle, Carmen; Hintermüller, Michael; Hinze, Michael; Keil, Tobias
    We are concerned with the simulation and control of a two phase flow model governed by a coupled Cahn--Hilliard Navier--Stokes system involving a nonsmooth energy potential.We establish the existence of optimal solutions and present two distinct approaches to derive suitable stationarity conditions for the bilevel problem, namely C- and strong stationarity. Moreover, we demonstrate the numerical realization of these concepts at the hands of two adaptive solution algorithms relying on a specifically developed goal-oriented error estimator.In addition, we present a model order reduction approach using proper orthogonal decomposition (POD-MOR) in order to replace high-fidelity models by low order surrogates. In particular, we combine POD with space-adapted snapshots and address the challenges which are the consideration of snapshots with different spatial resolutions and the conservation of a solenoidal property.
  • Item
    Stability of the solution set of quasi-variational inequalities and optimal control
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2019) Alphonse, Amal; Hintermüller, Michael; Rautenberg, Carlos N.
    For a class of quasivariational inequalities (QVIs) of obstacle-type the stability of its solution set and associated optimal control problems are considered. These optimal control problems are non-standard in the sense that they involve an objective with set-valued arguments. The approach to study the solution stability is based on perturbations of minimal and maximal elements to the solution set of the QVI with respect to monotonic perturbations of the forcing term. It is shown that different assumptions are required for studying decreasing and increasing perturbations and that the optimization problem of interest is well-posed.
  • Item
    A physically oriented method for quantitative magnetic resonance imaging
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2018) Dong, Guozhi; Hintermüller, Michael; Papafitsoros, Kostas
    Quantitative magnetic resonance imaging (qMRI) denotes the task of estimating the values of magnetic and tissue parameters, e.g., relaxation times T1, T2, proton density p and others. Recently in [Ma et al., Nature, 2013], an approach named Magnetic Resonance Fingerprinting (MRF) was introduced, being capable of simultaneously recovering these parameters by using a two step procedure: (i) a series of magnetization maps are created and then (ii) these are matched to parameters with the help of a pre-computed dictionary (Bloch manifold). In this paper, we initially put MRF and its variants in the perspective of optimization and inverse problems, providing some mathematical insights into these methods. Motivated by the fact that the Bloch manifold is non-convex, and the accuracy of the MRF type algorithms is limited by the discretization size of the dictionary, we propose here a novel physically oriented method for qMRI. In contrast to the conventional two step models, our model is dictionary-free and it is described by a single nonlinear equation, governed by an operator for which we prove differentiability and other properties. This non-linear equation is efficiently solved via robust Newton type methods. The effectiveness of our method for noisy and undersampled data is shown both analytically and via numerical examples where also improvement over MRF and its variants is observed.