Search Results

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Item

Electrospinning and electrospraying of silicon oxycarbide-derived nanoporous carbon for supercapacitor electrodes

2016, Tolosa, Aura, Krüner, Benjamin, Jäckel, Nicolas, Aslan, Mesut, Vakifahmetoglu, Cekdar, Presser, Volker

In this study, carbide-derived carbon fibers from silicon oxycarbide precursor were synthesized by electrospinning of a commercially available silicone resin without adding a carrier polymer for the electrospinning process. The electrospun fibers were pyrolyzed yielding SiOC. Modifying the synthesis procedure, we were able to obtain electrosprayed SiOC beads instead of fibers. After chlorine treatment, nanoporous carbon with a specific surface area of up to 2394 m2·g-1 was obtained (3089 m2·g-1 BET). Electrochemical characterization of the SiOC-CDC either as free-standing fiber mat electrodes or polymer-bound bead films was performed in 1 M tetraethylammonium tetrafluoroborate in acetonitrile (TEA-BF4 in ACN). The electrospun fibers presented a high gravimetric capacitance of 135 F·g-1 at 10 mV·s-1 and a very high power handling, maintaining 63 % of the capacitance at 100 A·g-1. Comparative data of SiOC-CDC beads and fibers show enhanced power handling for fiber mats only when the fiber network is intact, that is, a lowered performance was observed when using crushed mats that employ polymer binder.

Loading...
Thumbnail Image
Item

Sub-micron novolac-derived carbon beads for high performance supercapacitors and redox electrolyte energy storage

2016, Krüner, Benjamin, Lee, Juhan, Jäckel, Nicolas, Tolosa, Aura, Presser, Volker

Carbon beads with sub-micrometer diameter were produced with a self-emulsifying novolac–ethanol–water system. A physical activation with CO2 was carried out to create a high microporosity with a specific surface area varying from 771 (DFT) to 2237 m2/g (DFT) and a total pore volume from 0.28 to 1.71 cm3/g. The carbon particles conserve their spherical shape after the thermal treatments. The controllable porosity of the carbon spheres is attractive for the application in electrochemical double layer capacitors. The electrochemical characterization was carried out in aqueous 1 M Na2SO4 (127 F/g) and organic 1 M tetraethylammonium tetrafluoroborate in propylene carbonate (123 F/g). Furthermore, an aqueous redox electrolyte (6 M KI) was tested with the highly porous carbon and a specific energy of 33 W·h/kg (equivalent to 493 F/g) was obtained. In addition to a high specific capacitance, the carbon beads also provide an excellent rate performance at high current and potential in all tested electrolytes, which leads to a high specific power (>11 kW/kg) with an electrode thickness of ca. 200 μm.