Search Results

Now showing 1 - 5 of 5
  • Item
    Turning a Killing Mechanism into an Adhesion and Antifouling Advantage
    (Weinheim : Wiley-VCH, 2019) Dedisch, Sarah; Obstals, Fabian; los Santos Pereira, Andres; Bruns, Michael; Jakob, Felix; Schwaneberg, Ulrich; Rodriguez‐Emmenegger, Cesar
    Mild and universal methods to introduce functionality in polymeric surfaces remain a challenge. Herein, a bacterial killing mechanism based on amphiphilic antimicrobial peptides is turned into an adhesion advantage. Surface activity (surfactant) of the antimicrobial liquid chromatography peak I (LCI) peptide is exploited to achieve irreversible binding of a protein–polymer hybrid to surfaces via physical interactions. The protein–polymer hybrid consists of two blocks, a surface-affine block (LCI) and a functional block to prevent protein fouling on surfaces by grafting antifouling polymers via single electron transfer-living radical polymerization (SET-LRP). The mild conditions of SET-LRP of N-2-hydroxy propyl methacrylamide (HPMA) and carboxybetaine methacrylamide (CBMAA) preserve the secondary structure of the fusion protein. Adsorption kinetics and grafting densities are assessed using surface plasmon resonance and ellipsometry on model gold surfaces, while the functionalization of a range of artificial and natural surfaces, including teeth, is directly observed by confocal microscopy. Notably, the fusion protein modified with poly(HPMA) completely prevents the fouling from human blood plasma and thereby exhibits a resistance to protein fouling that is comparable to the best grafted-from polymer brushes. This, combined with their simple application on a large variety of materials, highlights the universal and scalable character of the antifouling concept. © 2019 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
  • Item
    Biadhesive Peptides for Assembling Stainless Steel and Compound Loaded Micro-Containers
    (Weinheim : Wiley-VCH, 2019) Apitius, Lina; Buschmann, Sven; Bergs, Christian; Schönauer, David; Jakob, Felix; Pich, Andrij; Schwaneberg, Ulrich
    Biadhesive peptides (peptesives) are an attractive tool for assembling two chemically different materials—for example, stainless steel and polycaprolactone (PCL). Stainless steel is used in medical stents and PCL is used as a biodegradable polymer for fabrication of tissue growth scaffolds and drug delivering micro-containers. Biadhesive peptides are composed of two domains (e.g., dermaseptin S1 and LCI) with different material-binding properties that are separated through a stiff peptide-spacer. The peptesive dermaseptin S1-domain Z-LCI immobilizes antibiotic-loaded PCL micro-containers on stainless steel surfaces. Immobilization is visualized by microscopy and field emission scanning electron microscopy analysis and released antibiotic from the micro-containers is confirmed through growth inhibition of Escherichia coli cells.
  • Item
    Targeting microplastic particles in the void of diluted suspensions
    (Amsterdam [u.a.] : Elsevier Science, 2019) Islam, Shohana; Apitius, Lina; Jakob, Felix; Schwaneberg, Ulrich
    Accumulation of microplastic in the environment and food chain will be a grand challenge for our society. Polyurethanes are widely used synthetic polymers in medical (e.g. catheters) and industrial products (especially as foams). Polyurethane is not abundant in nature and only a few microbial strains (fungi and bacteria) and enzymes (polyurethaneases and cutinases) have been reported to efficiently degrade polyurethane. Notably, in nature a long period of time (from 50 to >100 years depending on the literature) is required for degradation of plastics. Material binding peptides (e.g. anchor peptides) bind strongly to polymers such as polypropylene, polyethylene terephthalate, and polyurethane and can target specifically polymers. In this study we report the fusion of the anchor peptide Tachystatin A2 to the bacterial cutinase Tcur1278 which accelerated the degradation of polyester-polyurethane nanoparticles by a factor of 6.6 in comparison to wild-type Tcur1278. Additionally, degradation half-lives of polyester-polyurethane nanoparticles were reduced from 41.8 h to 6.2 h (6.7-fold) in a diluted polyester-polyurethane suspension (0.04% w/v).
  • Item
    A bifunctional dermaseptin–thanatin dipeptide functionalizes the crop surface for sustainable pest management
    (Cambridge : RSC, 2019) Schwinges, Patrick; Pariyar, Shyam; Jakob, Felix; Rahimi, Mehran; Apitius, Lina; Hunsche, Mauricio; Schmitt, Lutz; Noga, Georg; Langenbach, Caspar; Schwaneberg, Ulrich; Conrath, Uwe
    To reduce pesticide use while preserving crop productivity, alternative pest and disease control measures are needed. We thought of an alternative way of functionalizing leaves of soybean to fight its most severe disease, Asian soybean rust (Phakopsora pachyrhizi). To do so, we produced bifunctional peptides that adhere to the soybean leaf surface and prevent the germination of P. pachyrhizi spores. In detail, amphiphilic peptides liquid chromatography peak I (LCI), thanatin (THA), tachystatin A2 (TA2), and lactoferricin B (LFB) were all fused to enhanced green fluorescent protein (eGFP). Of these fusion peptides, eGFP–LCI and eGFP–THA bound strongly and in a rainfast manner to the surface of soybean, barley, and corn leaves. eGFP–THA binding to soybean also withstood high temperature, sunlight and biotic degradation for at least 17 days. The dipeptides seem to bind mainly to the surface wax layer of leaves because eGFP–THA and eGFP–LCI did not stick to the wax-depleted cer-j59 mutant of barley or to corn leaves with their surface wax removed. A fusion of the antimicrobial peptide dermaseptin 01 and THA (DS01–THA) inhibits the germination of P. pachyrhizi spores in vitro and reduces Asian soybean rust disease in a rainfast manner. Therefore, this study reveals that bifunctional peptides can be used to functionalize the crop surface for sustainable disease management.
  • Item
    KnowVolution of the Polymer-Binding Peptide LCI for Improved Polypropylene Binding
    (Basel : MDPI, 2018) Rübsam, Kristin; Davari, Mehdi D.; Jakob, Felix; Schwaneberg, Ulrich
    The functionalization of polymer surfaces by polymer-binding peptides offers tremendous opportunities for directed immobilization of enzymes, bioactive peptides, and antigens. The application of polymer-binding peptides as adhesion promoters requires reliable and stable binding under process conditions. Molecular modes of interactions between material surfaces, peptides, and solvent are often not understood to an extent that enables (semi-) rational design of polymer-binding peptides, hindering the full exploitation of their potential. Knowledge-gaining directed evolution (KnowVolution) is an efficient protein engineering strategy that facilitates tailoring protein properties to application demands through a combination of directed evolution and computational guided protein design. A single round of KnowVolution was performed to gain molecular insights into liquid chromatography peak I peptide, 47 aa (LCI)-binding to polypropylene (PP) in the presence of the competing surfactant Triton X-100. KnowVolution yielded a total of 8 key positions (D19, S27, Y29, D31, G35, I40, E42, and D45), which govern PP-binding in the presence of Triton X-100. The recombination of two of the identified amino acid substitutions (Y29R and G35R; variant KR-2) yielded a 5.4 ± 0.5-fold stronger PP-binding peptide compared to LCI WT in the presence of Triton X-100 (1 mM). The LCI variant KR-2 shows a maximum binding capacity of 8.8 ± 0.1 pmol/cm2 on PP in the presence of Triton X-100 (up to 1 mM). The KnowVolution approach enables the development of polymer-binding peptides, which efficiently coat and functionalize PP surfaces and withstand surfactant concentrations that are commonly used, such as in household detergents.