Search Results

Now showing 1 - 2 of 2
  • Item
    Bio-inspired deposition of electrochemically exfoliated graphene layers for electrical resistance heating applications
    (Bristol : IOP Publishing, 2020-12-4) Utech, Toni; Pötschke, Petra; Simon, Frank; Janke, Andreas; Kettner, Hannes; Paiva, Maria; Zimmerer, Cordelia
    Electrochemically exfoliated graphene (eeG) layers possess a variety of potential applications, e.g. as susceptor material for contactless induction heating in dynamic electro-magnetic fields, and as flexible and transparent electrode or resistivity heating elements. Spray coating of eeG dispersions was investigated in detail as a simple and fast method to deposit both, thin conducting layers and ring structures on polycarbonate substrates. The spray coating process was examined by systematic variation of dispersion concentration and volume applied to heated substrates. Properties of the obtained layers were characterized by UV-VIS spectroscopy, SEM and Confocal Scanning Microscopy. Electrical conductivity of eeG ring structures was measured using micro-four-point measurements. Modification of eeG with poly(dopamine) and post-thermal treatment yields in the reduction of the oxidized graphene proportion, an increase in electrical conductivity, and mechanical stabilization of the deposited thin layers. The chemical composition of modified eeG layer was analyzed via x-ray photoelectron spectroscopy pointing to the reductive behavior of poly(dopamine). Application oriented experiments demonstrate the direct electric current heating (Joule-Heating) effect of spray-coated eeG layers.
  • Item
    Targeted delivery of TLR3 agonist to tumor cells with single chain antibody fragment-conjugated nanoparticles induces type I-interferon response and apoptosis
    ([London] : Macmillan Publishers Limited, part of Springer Nature, 2019) Schau, Isabell; Michen, Susanne; Hagstotz, Alexander; Janke, Andreas; Schackert, Gabriele; Appelhans, Dietmar; Temme, Achim
    Application of Toll-like receptor (TLR) agonists is a promising approach to treat cancer. In particular, nucleic acid-based TLR agonists such as short ssRNA and dsRNA molecules, which activate endosomal TLRs, can be delivered to tumors by use of nanoparticle delivery systems. However, such delivery systems bear unspecific side effects and poor pharmacokinetics. To overcome these limitations we developed a system for targeted delivery of a 50 bp dsRNA TLR3 agonist (Riboxxol) to treat PSCA-positive tumor cells, which consists of neutravidin conjugated to mono-biotinylated dsRNA and to humanized mono-biotinylated anti-PSCA single chain antibody derivative scFv(h-AM1)-BAP. The assembly of the components resulted in the formation of nanoparticle-like immunoconjugates designated Rapid Inducer of Cellular Inflammation and Apoptosis (RICIA). Anti-PSCA-RICIA exclusively delivered Riboxxol to PSCA-positive tumor cells as well as subcutaneous tumors. Uptake of anti-PSCA-RICIA induced a type I-interferon response and apoptosis in HEK-Blue hTLR3/PSCA reporter cells and PSCA-positive HT1376 bladder cancer cells in vitro. No such effects were observed when using RICIA coupled to an unspecific control antibody or when using Riboxxol alone. Treatment of HT1376 xenografts in immune-deficient hosts with targeted delivery of TLR3 agonist did not induce adverse effects and only modestly inhibited tumor growth when compared to controls. These results suggest promising activation of innate immune response and apoptosis upon selective delivery of TLR3 agonists in tumor cells. Yet, further studies using syngeneic and orthotopic tumor models are needed to fully exploit the potential of RICIA immunoconjugates. © 2019, The Author(s).