Search Results

Now showing 1 - 3 of 3
  • Item
    Question Answering on Scholarly Knowledge Graphs
    (Cham : Springer, 2020) Jaradeh, Mohamad Yaser; Stocker, Markus; Auer, Sören; Hall, Mark; Merčun, Tanja; Risse, Thomas; Duchateau, Fabien
    Answering questions on scholarly knowledge comprising text and other artifacts is a vital part of any research life cycle. Querying scholarly knowledge and retrieving suitable answers is currently hardly possible due to the following primary reason: machine inactionable, ambiguous and unstructured content in publications. We present JarvisQA, a BERT based system to answer questions on tabular views of scholarly knowledge graphs. Such tables can be found in a variety of shapes in the scholarly literature (e.g., surveys, comparisons or results). Our system can retrieve direct answers to a variety of different questions asked on tabular data in articles. Furthermore, we present a preliminary dataset of related tables and a corresponding set of natural language questions. This dataset is used as a benchmark for our system and can be reused by others. Additionally, JarvisQA is evaluated on two datasets against other baselines and shows an improvement of two to three folds in performance compared to related methods.
  • Item
    Generate FAIR Literature Surveys with Scholarly Knowledge Graphs
    (New York City, NY : Association for Computing Machinery, 2020) Oelen, Allard; Jaradeh, Mohamad Yaser; Stocker, Markus; Auer, Sören
    Reviewing scientific literature is a cumbersome, time consuming but crucial activity in research. Leveraging a scholarly knowledge graph, we present a methodology and a system for comparing scholarly literature, in particular research contributions describing the addressed problem, utilized materials, employed methods and yielded results. The system can be used by researchers to quickly get familiar with existing work in a specific research domain (e.g., a concrete research question or hypothesis). Additionally, it can be used to publish literature surveys following the FAIR Data Principles. The methodology to create a research contribution comparison consists of multiple tasks, specifically: (a) finding similar contributions, (b) aligning contribution descriptions, (c) visualizing and finally (d) publishing the comparison. The methodology is implemented within the Open Research Knowledge Graph (ORKG), a scholarly infrastructure that enables researchers to collaboratively describe, find and compare research contributions. We evaluate the implementation using data extracted from published review articles. The evaluation also addresses the FAIRness of comparisons published with the ORKG.
  • Item
    The STEM-ECR Dataset: Grounding Scientific Entity References in STEM Scholarly Content to Authoritative Encyclopedic and Lexicographic Sources
    (Paris : European Language Resources Association, 2020) D'Souza, Jennifer; Hoppe, Anett; Brack, Arthur; Jaradeh, Mohamad Yaser; Auer, Sören; Ewerth, Ralph
    We introduce the STEM (Science, Technology, Engineering, and Medicine) Dataset for Scientific Entity Extraction, Classification, and Resolution, version 1.0 (STEM-ECR v1.0). The STEM-ECR v1.0 dataset has been developed to provide a benchmark for the evaluation of scientific entity extraction, classification, and resolution tasks in a domain-independent fashion. It comprises abstracts in 10 STEM disciplines that were found to be the most prolific ones on a major publishing platform. We describe the creation of such a multidisciplinary corpus and highlight the obtained findings in terms of the following features: 1) a generic conceptual formalism for scientific entities in a multidisciplinary scientific context; 2) the feasibility of the domain-independent human annotation of scientific entities under such a generic formalism; 3) a performance benchmark obtainable for automatic extraction of multidisciplinary scientific entities using BERT-based neural models; 4) a delineated 3-step entity resolution procedure for human annotation of the scientific entities via encyclopedic entity linking and lexicographic word sense disambiguation; and 5) human evaluations of Babelfy returned encyclopedic links and lexicographic senses for our entities. Our findings cumulatively indicate that human annotation and automatic learning of multidisciplinary scientific concepts as well as their semantic disambiguation in a wide-ranging setting as STEM is reasonable.