Search Results

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Item

Perpendicular magnetic anisotropy in the Heusler alloy Co2TiSi/GaAs(001) hybrid structure

2015, Dau, M.T., Jenichen, B., Herfort, J.

Investigation of the thickness dependence of the magnetic anisotropy in B2-type Co2TiSi films on GaAs(001), shows a pronounced perpendicular magnetic anisotropy at 10 K for thicknesses up to 13.5 nm. We have evidenced that the interfacial anisotropy induced by interface clusters has a strong influence on the perpendicular magnetic anisotropy of this hybrid structure, especially at temperatures lower than the blocking temperature of the clusters (28 K). However, as this influence can be ruled out at higher temperatures, the perpendicular magnetic anisotropy which is found to persist up to room-temperature can be ascribed to the magnetic properties of the Co2TiSi films. For thicknesses larger than 15.0 nm, we observe an alignment of the magnetic easy axis parallel to the sample surface, which is most likely due to the shape anisotropy and the film structure.

Loading...
Thumbnail Image
Item

Growth of Fe3Si/Ge/Fe3Si trilayers on GaAs(001) using solid-phase epitaxy

2017, Gaucher, S., Jenichen, B., Kalt, J., Jahn, U., Trampert, A., Herfort, J.

Ferromagnetic Heusler alloys can be used in combination with semiconductors to create spintronic devices. The materials have cubic crystal structures, making it possible to grow lattice-matched heterojunctions by molecular beam epitaxy. However, the development of devices is limited by the difficulty of growing epitaxial semiconductors over metallic surfaces while preventing chemical reactions, a requirement to obtain abrupt interfaces and achieve efficient spin-injection by tunneling. We used a solid-phase epitaxy approach to grow crystalline thin film stacks on GaAs(001) substrates, while preventing interfacial reactions. The crystallized Ge layer forms superlattice regions, which are caused by the migration of Fe and Si atoms into the film. X-ray diffraction and transmission electron microscopy indicate that the trilayers are fully crystalline, lattice-matched, and have ideal interface quality over extended areas.