Search Results

Now showing 1 - 2 of 2
  • Item
    General and selective synthesis of primary amines using Ni-based homogeneous catalysts
    (Cambridge : RSC, 2020) Murugesan, Kathiravan; Wei, Zhihong; Chandrashekhar, Vishwas G.; Jiao, Haijun; Beller, Matthias; Jagadeesh, Rajenahally V.
    The development of base metal catalysts for industrially relevant amination and hydrogenation reactions by applying abundant and atom economical reagents continues to be important for the cost-effective and sustainable synthesis of amines which represent highly essential chemicals. In particular, the synthesis of primary amines is of central importance because these compounds serve as key precursors and central intermediates to produce value-added fine and bulk chemicals as well as pharmaceuticals, agrochemicals and materials. Here we report a Ni-triphos complex as the first Ni-based homogeneous catalyst for both reductive amination of carbonyl compounds with ammonia and hydrogenation of nitroarenes to prepare all kinds of primary amines. Remarkably, this Ni-complex enabled the synthesis of functionalized and structurally diverse benzylic, heterocyclic and aliphatic linear and branched primary amines as well as aromatic primary amines starting from inexpensive and easily accessible carbonyl compounds (aldehydes and ketones) and nitroarenes using ammonia and molecular hydrogen. This Ni-catalyzed reductive amination methodology has been applied for the amination of more complex pharmaceuticals and steroid derivatives. Detailed DFT computations have been performed for the Ni-triphos based reductive amination reaction, and they revealed that the overall reaction has an inner-sphere mechanism with H2metathesis as the rate-determining step. © The Royal Society of Chemistry 2020.
  • Item
    CpCo(i) precatalysts for [2 + 2 + 2] cycloaddition reactions : Synthesis and reactivity
    (London : RSC Publ., 2020) Fischer, Fabian; Pientka, Tobias; Jiao, Haijun; Spannenberg, Anke; Hapke, Marko
    The efficient synthesis and structural characterisation of a series of novel CpCo(i)-olefin-phosphite/phosphoramidite complexes and their evaluation in catalytic cyclotrimerisation reactions are reported. The protocol for precatalyst synthesis is widely applicable to different P-containing ligands, especially phosphites and phosphoramidites, as well as acyclic and cyclic olefins. A selection of the prepared complexes was investigated towards their catalytic performance in [2 + 2 + 2] cycloaddition reactions of diynes and nitriles, as well as triynes. While revealing significant differences in reactivity, the most reactive precatalysts work even already at 75 °C. One of these precatalysts also proved its potential in exemplary (co)cyclotrimerisations towards functionalised pyridines and benzenes. The energetics of complex formation and exemplary ligand exchange with a substrate diyne were elucidated by theoretical calculations and compared with the catalytic reactivity. © 2020 The Royal Society of Chemistry.