Search Results

Now showing 1 - 4 of 4
  • Item
    Optimizing the detection, ablation, and ion extraction efficiency of a single-particle laser ablation mass spectrometer for application in environments with low aerosol particle concentrations
    (Katlenburg-Lindau : Copernicus, 2020) Clemen, Hans-Christian; Schneider, Johannes; Klimach, Thomas; Helleis, Frank; Köllner, Franziska; Hünig, Andreas; Rubach, Florian; Mertes, Stephan; Wex, Heike; Stratmann, Frank; Welti, André; Kohl, Rebecca; Frank, Fabian; Borrmann, Stephan
    The aim of this study is to show how a newly developed aerodynamic lens system (ALS), a delayed ion extraction (DIE), and better electric shielding improve the efficiency of the Aircraft-based Laser ABlation Aerosol MAss spectrometer (ALABAMA). These improvements are applicable to single-particle laser ablation mass spectrometers in general. To characterize the modifications, extensive sizeresolved measurements with spherical polystyrene latex particles (PSL; 150-6000 nm) and cubic sodium chloride particles (NaCl; 400-1700 nm) were performed. Measurements at a fixed ALS position show an improved detectable particle size range of the new ALS compared to the previously used Liu-type ALS, especially for supermicron particles. At a lens pressure of 2.4 hPa, the new ALS achieves a PSL particle size range from 230 to 3240 nm with 50% detection efficiency and between 350 and 2000 nm with 95% detection efficiency. The particle beam divergence was determined by measuring the detection efficiency at variable ALS positions along the laser cross sections and found to be minimal for PSL at about 800 nm. Compared to measurements by singleparticle mass spectrometry (SPMS) instruments using Liutype ALSs, the minimum particle beam divergence is shifted towards larger particle sizes. However, there are no disadvantages compared to the Liu-type lenses for particle sizes down to 200 nm. Improvements achieved by using the DIE and an additional electric shielding could be evaluated by size-resolved measurements of the hit rate, which is the ratio of laser pulses yielding a detectable amount of ions to the total number of emitted laser pulses. In particular, the hit rate for multiply charged particles smaller than 500 nm is significantly improved by preventing an undesired deflection of these particles in the ion extraction field. Moreover, it was found that by using the DIE the ion yield of the ablation, ionization, and ion extraction process could be increased, resulting in up to 7 times higher signal intensities of the cation spectra. The enhanced ion yield results in a larger effective width of the ablation laser beam, which in turn leads to a hit rate of almost 100% for PSL particles in the size range from 350 to 2000 nm. Regarding cubic NaCl particles the modifications of the ALABAMA result in an up to 2 times increased detection efficiency and an up to 5 times increased hit rate. The need for such instrument modifications arises in particular for measurements of particles that are present in low number concentrations such as ice-nucleating particles (INPs) in general, but also aerosol particles at high altitudes or in pristine environments. Especially for these low particle number concentrations, improved efficiencies help to overcome the statistical limitations of single-particle mass spectrometer measurements. As an example, laboratory INP measurements carried out in this study show that the appli- cation of the DIE alone increases the number of INP mass spectra per time unit by a factor of 2 to 3 for the sampled substances. Overall, the combination of instrument modifications presented here resulted in an increased measurement efficiency of the ALABAMA for different particle types and particles shape as well as for highly charged particles. © 2020 Copernicus GmbH. All rights reserved.
  • Item
    A comprehensive in situ and remote sensing data set from the Arctic CLoud Observations Using airborne measurements during polar Day (ACLOUD) campaign
    (Katlenburg-Lindau : Copernics Publications, 2019) Ehrlich, André; Wendisch, Manfred; Lüpkes, Christof; Buschmann, Matthias; Bozem, Heiko; Chechin, Dmitri; Clemen, Hans-Christian; Dupuy, Régis; Eppers, Olliver; Hartmann, Jörg; Herber, Andreas; Jäkel, Evelyn; Järvinen, Emma; Jourdan, Olivier; Kästner, Udo; Kliesch, Leif-Leonard; Köllner, Franziska; Mech, Mario; Mertes, Stephan; Neuber, Roland; Ruiz-Donoso, Elena; Schnaiter, Martin; Schneide, Johannes; Stapf, Johannes; Zanatta, Marco
    The Arctic CLoud Observations Using airborne measurements during polar Day (ACLOUD) campaign was carried out north-west of Svalbard (Norway) between 23 May and 6 June 2017. The objective of ACLOUD was to study Arctic boundary layer and mid-level clouds and their role in Arctic amplification. Two research aircraft (Polar 5 and 6) jointly performed 22 research flights over the transition zone between open ocean and closed sea ice. Both aircraft were equipped with identical instrumentation for measurements of basic meteorological parameters, as well as for turbulent and radiative energy fluxes. In addition, on Polar 5 active and passive remote sensing instruments were installed, while Polar 6 operated in situ instruments to characterize cloud and aerosol particles as well as trace gases. A detailed overview of the specifications, data processing, and data quality is provided here. It is shown that the scientific analysis of the ACLOUD data benefits from the coordinated operation of both aircraft. By combining the cloud remote sensing techniques operated on Polar 5, the synergy of multi-instrument cloud retrieval is illustrated. The remote sensing methods were validated using truly collocated in situ and remote sensing observations. The data of identical instruments operated on both aircraft were merged to extend the spatial coverage of mean atmospheric quantities and turbulent and radiative flux measurement. Therefore, the data set of the ACLOUD campaign provides comprehensive in situ and remote sensing observations characterizing the cloudy Arctic atmosphere. All processed, calibrated, and validated data are published in the World Data Center PANGAEA as instrument-separated data subsets (Ehrlich et al., 2019b, https://doi.org/10.1594/PANGAEA.902603).
  • Item
    The Arctic Cloud Puzzle: Using ACLOUD/PASCAL Multiplatform Observations to Unravel the Role of Clouds and Aerosol Particles in Arctic Amplification
    (Boston, Mass. : ASM, 2019) Wendisch, Manfred; Macke, Andreas; Ehrlich, André; Lüpkes, Christof; Mech, Mario; Chechin, Dmitry; Dethloff, Klaus; Velasco, Carola Barrientos; Bozem, Heiko; Brückner, Marlen; Clemen, Hans-Christian; Crewell, Susanne; Donth, Tobias; Dupuy, Regis; Ebell, Kerstin; Egerer, Ulrike; Engelmann, Ronny; Engler, Christa; Eppers, Oliver; Gehrmann, Martin; Gong, Xianda; Gottschalk, Matthias; Gourbeyre, Christophe; Griesche, Hannes; Hartmann, Jörg; Hartmann, Markus; Heinold, Bernd; Herber, Andreas; Herrmann, Hartmut; Heygster, Georg; Hoor, Peter; Jafariserajehlou, Soheila; Jäkel, Evelyn; Järvinen, Emma; Jourdan, Olivier; Kästner, Udo; Kecorius, Simonas; Knudsen, Erlend M.; Köllner, Franziska; Kretzschmar, Jan; Lelli, Luca; Leroy, Delphine; Maturilli, Marion; Mei, Linlu; Mertes, Stephan; Mioche, Guillaume; Neuber, Roland; Nicolaus, Marcel; Nomokonova, Tatiana; Notholt, Justus; Palm, Mathias; van Pinxteren, Manuela; Quaas, Johannes; Richter, Philipp; Ruiz-Donoso, Elena; Schäfer, Michael; Schmieder, Katja; Schnaiter, Martin; Schneider, Johannes; Schwarzenböck, Alfons; Seifert, Patric; Shupe, Matthew D.; Siebert, Holger; Spreen, Gunnar; Stapf, Johannes; Stratmann, Frank; Vogl, Teresa; Welti, André; Wex, Heike; Wiedensohler, Alfred; Zanatta, Marco; Zeppenfeld, Sebastian
    Clouds play an important role in Arctic amplification. This term represents the recently observed enhanced warming of the Arctic relative to the global increase of near-surface air temperature. However, there are still important knowledge gaps regarding the interplay between Arctic clouds and aerosol particles, and surface properties, as well as turbulent and radiative fluxes that inhibit accurate model simulations of clouds in the Arctic climate system. In an attempt to resolve this so-called Arctic cloud puzzle, two comprehensive and closely coordinated field studies were conducted: the Arctic Cloud Observations Using Airborne Measurements during Polar Day (ACLOUD) aircraft campaign and the Physical Feedbacks of Arctic Boundary Layer, Sea Ice, Cloud and Aerosol (PASCAL) ice breaker expedition. Both observational studies were performed in the framework of the German Arctic Amplification: Climate Relevant Atmospheric and Surface Processes, and Feedback Mechanisms (AC) project. They took place in the vicinity of Svalbard, Norway, in May and June 2017. ACLOUD and PASCAL explored four pieces of the Arctic cloud puzzle: cloud properties, aerosol impact on clouds, atmospheric radiation, and turbulent dynamical processes. The two instrumented Polar 5 and Polar 6 aircraft; the icebreaker Research Vessel (R/V) Polarstern; an ice floe camp including an instrumented tethered balloon; and the permanent ground-based measurement station at Ny-Ålesund, Svalbard, were employed to observe Arctic low- and mid-level mixed-phase clouds and to investigate related atmospheric and surface processes. The Polar 5 aircraft served as a remote sensing observatory examining the clouds from above by downward-looking sensors; the Polar 6 aircraft operated as a flying in situ measurement laboratory sampling inside and below the clouds. Most of the collocated Polar 5/6 flights were conducted either above the R/V Polarstern or over the Ny-Ålesund station, both of which monitored the clouds from below using similar but upward-looking remote sensing techniques as the Polar 5 aircraft. Several of the flights were carried out underneath collocated satellite tracks. The paper motivates the scientific objectives of the ACLOUD/PASCAL observations and describes the measured quantities, retrieved parameters, and the applied complementary instrumentation. Furthermore, it discusses selected measurement results and poses critical research questions to be answered in future papers analyzing the data from the two field campaigns.
  • Item
    Application of an O-ring pinch device as a constant-pressure inlet (CPI) for airborne sampling
    (Katlenburg-Lindau : Copernicus, 2020) Molleker, Sergej; Helleis, Frank; Klimach, Thomas; Appel, Oliver; Clemen, Hans-Christian; Dragoneas, Antonis; Gurk, Christian; Hünig, Andreas; Köllner, Franziska; Rubach, Florian; Schulz, Christiane; Schneider, Johannes; Borrmann, Stephan
    We present a novel and compact design of a constant-pressure inlet (CPI) developed for use in airborne aerosol mass spectrometry. In particular, the inlet system is optimized for aerodynamic lenses commonly used in aerosol mass spectrometers, in which efficient focusing of aerosol particles into a vacuum chamber requires a precisely controlled lens pressure, typically of a few hectopascals. The CPI device can also be used in condensation particle counters (CPCs), cloud condensation nucleus counters (CCNCs), and gas-phase sampling instruments across a wide range of altitudes and inlet pressures. The constant pressure is achieved by changing the inner diameter of a properly scaled O-ring that acts as a critical orifice. The CPI control keeps air pressure and thereby mass flow rate (≈0.1 L min-1) upstream of an aerodynamic lens constant, deviating at most by only ±2 % from a preset value. In our setup, a pressure sensor downstream of the O-ring maintains control of the pinch mechanism via a feedback loop and setpoint conditions are reached within seconds. The device was implemented in a few instruments, which were successfully operated on different research aircraft covering a wide range of ambient pressures, from sea level up to about 55 hPa. Details of operation and the quality of aerosol particle transmission were evaluated by laboratory experiments and in-flight data with a single-particle mass spectrometer. © Author(s) 2020. This work is distributed under the Creative Commons Attribution 4.0 License.