Search Results

Now showing 1 - 3 of 3
  • Item
    High-order parametric generation of coherent XUV radiation
    (Washington, DC : Soc., 2021) Hort, O.; Dubrouil, A.; Khokhlova, M.A.; Descamps, D.; Petit, S.; Burgy, F.; Mével, E.; Constant, E.; Strelkov, V.V.
    Extreme ultraviolet (XUV) radiation finds numerous applications in spectroscopy. When the XUV light is generated via high-order harmonic generation (HHG), it may be produced in the form of attosecond pulses, allowing access to unprecedented ultrafast phenomena. However, the HHG efficiency remains limited. Here we present an observation of a new regime of coherent XUV emission which has a potential to provide higher XUV intensity, vital for applications. We explain the process by high-order parametric generation, involving the combined emission of THz and XUV photons, where the phase matching is very robust against ionization. This introduces a way to use higher-energy driving pulses, thus generating more XUV photons.
  • Item
    Chirp-control of resonant high-order harmonic generation in indium ablation plumes driven by intense few-cycle laser pulses
    (Washington, DC : Optical Society of America, OSA, 2018) Abdelrahman, Z.; Khokhlova, M.A.; Walke, D.J.; Witting, T.; Zair, A.; Strelkov, V.V.; Marangos, J.P.; Tisch, J.W.G.
    We have studied high-order harmonic generation (HHG) in an indium ablation plume driven by intense few-cycle laser pulses centered at 775 nm as a function of the frequency chirp of the laser pulse. We found experimentally that resonant emission lines between 19.7 eV and 22.3 eV (close to the 13th and 15th harmonic of the laser) exhibit a strong, asymmetric chirp dependence, with pronounced intensity modulations. The chirp dependence is reproduced by our numerical time-dependent Schrödinger equation simulations of a resonant HHG by the model indium ion. As demonstrated with our separate simulations of HHG within the strong field approximation, the resonance can be understood in terms of the chirp-dependent HHG photon energy coinciding with the energy of an autoionizing state to ground state transition with high oscillator strength. This supports the validity of the general theory of resonant four-step HHG in the few-cycle limit.
  • Item
    Highly efficient XUV generation via high-order frequency mixing
    ([London] : IOP, 2020) Khokhlova, M.A.; Strelkov, V.V.
    The efficient generation of the coherent XUV light via frequency conversion of intense laser drivers is a problem of both fundamental and technological importance. Increasing the intensity of the generated high harmonics by raising the intensity of the driving field works only up to a point: at high intensities, rapid ionisation of the medium limits the conversion efficiency. Considering the combined effect of the phase-matching and of the blue shift of the driving field during its propagation in a rapidly ionising medium, we show that the latter can be the dominant limiting mechanism. We introduce a new spatial scale, the blue-shift length, which sets the upper bound for the quadratic intensity growth of the generated harmonics. Moreover, we show that this seemingly fundamental restriction can be overcome by using an additional generating weak mid-IR field. For specific combinations of frequencies of the generating fields, the corresponding high-order frequency-mixing process does not suffer from the blue shift of the drivers and phase mismatch, and thus its efficiency grows quadratically with propagation distance. Our results thus open a new route for highly efficient generation of coherent XUV light. © 2020 The Author(s). Published by IOP Publishing Ltd on behalf of the Institute of Physics and Deutsche Physikalische Gesellschaft.