Search Results

Now showing 1 - 3 of 3
Loading...
Thumbnail Image
Item

REScO3 Substrates—Purveyors of Strain Engineering

2019, Klimm, Detlef, Guguschev, Christo, Ganschow, Steffen, Bickermann, Matthias, Schlom, Darrell G.

The thermodynamic and crystallographic background for the development of substrate crystals that are suitable for the epitaxial deposition of biaxially strained functional perovskite layers is reviewed. In such strained layers the elastic energy delivers an additional contribution to the Gibbs free energy, which allows the tuning of physical properties and phase transition temperatures to desired values. For some oxide systems metastable phases can even be accessed. Rare-earth scandates, REScO3, are well suited as substrate crystals because they combine mechanical and chemical stability in the epitaxy process with an adjustable range of pseudo-cubic lattice parameters in the 3.95 to 4.02 Å range. To further tune the lattice parameters, chemical substitution for the RE or Sc is possible. © 2019 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

Loading...
Thumbnail Image
Item

Crystal growth and thermodynamic investigation of Bi2M2+O4 (M = Pd, Cu)

2021, Wolff, Nora, Klimm, Detlef, Habicht, Klaus, Fritsch, Katharina

Phase equilibria that are relevant for the growth of Bi2MO4 have been studied experimentally, and the ternary phase diagrams of Bi2O3–PdO2–Pd and Bi2O3–Cu2O–CuO and its isopleth section Bi2O3–CuO were redetermined. It is shown that every melting and crystallization process is always accompanied by a redox process at the phase boundary and that for both title compounds, the valence of the transition metal is lowered during melting. Vice versa, during crystal growth, O2 must be transported through the melt to the phase boundary. Based on these new insights provided by our thermodynamic studies, Bi2CuO4 single crystals with a length of up to 7 cm and a diameter of 6 mm were grown by the OFZ technique to be used for investigations of magnetic, electronic and thermal transport properties. The grown crystals were characterized by powder X-ray diffraction, Laue, magnetization and specific heat measurements.

Loading...
Thumbnail Image
Item

AlF3-assisted flux growth of mullite whiskers and their application in fabrication of porous mullite-alumina monoliths

2021, Abdullayev, Amanmyrat, Klimm, Detlef, Kamutzki, Franz, Gurlo, Aleksander, Bekheet, Maged F.

Mullite is a promising material with its competitive thermochemical and mechanical properties. Although mullite could be obtained by several synthesis methods, the flux method emerges with its advantages over other methods. However, obtaining mullite whiskers with a high aspect ratio and length for ceramic reinforcements is still challenging. In this work, mullite whiskers were grown from AlF3-assisted flux. The addition of AlF3 to flux salt not only decreases the formation temperature of mullite to as low as 700 ​°C and suppresses the formation of corundum side phase, but also increases the length and aspect ratio of the whiskers. The obtained mullite whiskers were used as reinforcement for porous alumina monoliths prepared by the freeze casting route and subsequent sintering at 1500 ​°C. The fabricated mullite-alumina monoliths show competitive compressive strength of 25.7 ​MPa while having as high as 70.6% porosity, which makes them a potential candidate for membrane applications.