Search Results

Now showing 1 - 3 of 3
  • Item
    Ultrafast intermodal third harmonic generation in a liquid core step-index fiber filled with C2Cl4: erratum
    (Washington, DC : Soc., 2021) Schaarschmidt, Kay; Kobelke, Jens; Nolte, Stefan; Meyer, Tobias; Schmidt, Markus A.
    We provide a correction due to an erroneous repetition rate of one of the laser systems (90 fs pulse duration) in our previously published paper [Opt. Express28, 25037 (2020)10.1364/OE.399771].
  • Item
    Negative curvature hollow core fiber sensor for the measurement of strain and temperature
    (Washington, DC : Soc., 2021) Ferreira, Marta S.; Bierlich, Jörg; Kobelke, Jens; Pinto, João L.; Wondraczek, Katrin
    Three different types of strain and temperature sensors based on negative curvature hollow core fiber (NCHCF) are proposed. Each sensor is produced by splicing a small section of the NCHCF between two sections of single mode fiber. Different types of interferometers are obtained simply by changing the splicing conditions. The first sensor consists on a single Fabry-Perot interferometer (FPI). The remaining two configurations are attained with the same sensing structure, depending on its position in relation to the interrogation setup. Thus, a double FPI or a hybrid sensor, the latter being composed by an FPI and a Michelson interferometer, are formed. The inline sensors are of submillimeter size, thus enabling nearly punctual measurements.
  • Item
    Ultrafast intermodal third harmonic generation in a liquid core step-index fiber filled with C2Cl4
    (Washington, DC : Soc., 2020) Schaarschmidt, Kay; Kobelke, Jens; Nolte, Stefan; Meyer, Tobias; Schmidt, Markus A.
    Third harmonic generation in a circular liquid core step-index fiber filled with a highly transparent inorganic solvent is demonstrated experimentally using ultrafast pump pulses of different durations in the telecom domain for the first time. Specifically we achieve intermodal phase matching to the HE13 higher order mode at the harmonic wavelength and found clear indications of a non-instantaneous molecular contribution to the total nonlinearity in the spectral broadening of the pump. Spectral power evolution and efficiency of the conversion process is studied for all pulse parameters, while we found the greatest photon yield for the longest pulses as well as an unexpected blue-shift of the third harmonic wavelength with increasing pump power. Our results provide the basis for future studies aiming at using this tunable fiber platform with a sophisticated nonlinear response in the context of harmonic generation. © 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement