Search Results

Now showing 1 - 4 of 4
Loading...
Thumbnail Image
Item

Squalenyl Hydrogen Sulfate Nanoparticles for Simultaneous Delivery of Tobramycin and an Alkylquinolone Quorum Sensing Inhibitor Enable the Eradication of P. aeruginosa Biofilm Infections

2020, Ho, D.-K., Murgia, X., De Rossi, C., Christmann, R., Hüfner de Mello Martins, A.G., Koch, M., Andreas, A., Herrmann, J., Müller, R., Empting, M., Hartmann, R.W., Desmaele, D., Loretz, B., Couvreur, P., Lehr, C.-M.

Elimination of pulmonary Pseudomonas aeruginosa (PA) infections is challenging to accomplish with antibiotic therapies, mainly due to resistance mechanisms. Quorum sensing inhibitors (QSIs) interfering with biofilm formation can thus complement antibiotics. For simultaneous and improved delivery of both active agents to the infection sites, self-assembling nanoparticles of a newly synthesized squalenyl hydrogen sulfate (SqNPs) were prepared. These nanocarriers allowed for remarkably high loading capacities of hydrophilic antibiotic tobramycin (Tob) and a novel lipophilic QSI at 30 % and circa 10 %, respectively. The drug-loaded SqNPs showed improved biofilm penetration and enhanced efficacy in relevant biological barriers (mucin/human tracheal mucus, biofilm), leading to complete eradication of PA biofilms at circa 16-fold lower Tob concentration than Tob alone. This study offers a viable therapy optimization and invigorates the research and development of QSIs for clinical use.

Loading...
Thumbnail Image
Item

A tandem of GC-MS and electroanalysis for a rapid chemical profiling of bacterial extracellular matrix

2023, Silina, Y. E., Zolotukhina, E. V., Koch, M., Fink‐Straube, C.

Herein an assay toward a rapid and reliable profiling of extracellular matrix of Escherichia coli (E. coli) utilizing a tandem of GC-MS as a tool for definition of the exact chemical nature of low molecular weight compounds and cyclic voltammetry for their high throughput detection is presented. Briefly, during a set of investigations the formation of glycerol in the extracellular matrix (ECM) of E. coli at physiological relevant conditions of cells was revealed. Based on the obtained knowledge, the electrochemical protocol allowing both qualitative and quantitative analyses of glycerol in E. coli ECMs at palladium ink-modified screen printed electrodes with precision values (RSD) <10 % and recovery rates ranged from 98 % to 102 % was proposed. The provided protocol for a rapid electrochemical profiling of the bacterial ECMs can readily be used as a guideline for the controlled electroanalysis of target electroactive signaling analytes in complex biological samples.

Loading...
Thumbnail Image
Item

Towards hybrid one-pot/one-electrode Pd-NPs-based nanoreactors for modular biocatalysis

2021, Koch, M., Apushkinskaya, N., Zolotukhina, E.V., Silina, Y.E.

Here, fundamental aspects affecting template-assisted engineering of oxidase-associated peroxide oxidation co-catalysis of the modeled microanalytical system based on the hybrid palladium nanoparticles (Pd-NPs) with tailored functional properties were studied. By an accurate tuning and validation of the experimental setup, a modular Pd-NPs-doped one-pot/one-electrode amperometric nanobiosensor for advanced multiplex analyte detection was constructed. The specific operational conditions (electrochemical read-out mode, pH, regeneration procedure) of the modular one-pot/one-electrode nanobiosensor allowed a reliable sensing of L-lactate (with linear dynamic range, LDR = 500 µM – 2 mM, R2 = 0.977), D-glucose (with LDR = 200 µM – 50 mM, R2 = 0.987), hydrogen peroxide (with LDR = 20 µM – 100 mM, R2 = 0.998) and glutaraldehyde (with LDR = 1 – 100 mM, R2 = 0.971). In addition, mechanistic aspects influencing the performance of Pd-NPs-doped one-pot/one-electrode for multiplex analyte sensing were studied in detail. The designed one-pot/one-electrode amperometric nanobiosensor showed a thin layer electrochemical behavior that greatly enhanced electron transfer between the functional hybrid layer and the electrode. Finally, a specific regeneration procedure of the hybrid one-pot/one-electrode and algorithm towards its usage for modular biocatalysis were developed. The reported strategy can readily be considered as a guideline towards the fabrication of commercialized nanobiosensors with tailored properties for advanced modular biocatalysis.

Loading...
Thumbnail Image
Item

Targeted delivery of functionalized PLGA nanoparticles to macrophages by complexation with the yeast Saccharomyces cerevisiae

2020, Kiefer, R., Jurisic, M., Dahlem, C., Koch, M., Schmitt, M.J., Kiemer, A.K., Schneider, M., Breinig, F.

Nanoparticles (NPs) are able to deliver a variety of substances into eukaryotic cells. However, their usage is often hampered by a lack of specificity, leading to the undesired uptake of NPs by virtually all cell types. In contrast to this, yeast is known to be specifically taken up into immune cells after entering the body. Therefore, we investigated the interaction of biodegradable surface-modified poly(lactic-co-glycolic acid) (PLGA) particles with yeast cells to overcome the unspecificity of the particulate carriers. Cells of different Saccharomyces cerevisiae strains were characterized regarding their interaction with PLGA-NPs under isotonic and hypotonic conditions. The particles were shown to efficiently interact with yeast cells leading to stable NP/yeast-complexes allowing to associate or even internalize compounds. Notably, applying those complexes to a coculture model of HeLa cells and macrophages, the macrophages were specifically targeted. This novel nano-in-micro carrier system suggests itself as a promising tool for the delivery of biologically active agents into phagocytic cells combining specificity and efficiency.