Search Results

Now showing 1 - 3 of 3
  • Item
    Colloidal PbS nanoplatelets synthesized via cation exchange for electronic applications
    (Cambridge : RSC Publ., 2019) Sonntag, Luisa; Shamraienko, Volodymyr; Fan, Xuelin; Samadi Khoshkhoo, Mahdi; Kneppe, David; Koitzsch, Andreas; Gemming, Thomas; Hiekel, Karl; Leo, Karl; Lesnyak, Vladimir; Eychmüller, Alexander
    In this work, we present a new synthetic approach to colloidal PbS nanoplatelets (NPLs) utilizing a cation exchange (CE) strategy starting from CuS NPLs synthesized via the hot-injection method. Whereas the thickness of the resulting CuS NPLs was fixed at approx. 5 nm, the lateral size could be tuned by varying the reaction conditions, such as time from 6 to 16 h, the reaction temperature (120 °C, 140 °C), and the amount of copper precursor. In a second step, Cu+ cations were replaced with Pb2+ ions within the crystal lattice via CE. While the shape and the size of parental CuS platelets were preserved, the crystal structure was rearranged from hexagonal covellite to PbS galena, accompanied by the fragmentation of the monocrystalline phase into polycrystalline one. Afterwards a halide mediated ligand exchange (LE) was carried out in order to remove insulating oleic acid residues from the PbS NPL surface and to form stable dispersions in polar organic solvents enabling thin-film fabrication. Both CE and LE processes were monitored by several characterization techniques. Furthermore, we measured the electrical conductivity of the resulting PbS NPL-based films before and after LE and compared the processing in ambient to inert atmosphere. Finally, we fabricated field-effect transistors with an on/off ratio of up to 60 and linear charge carrier mobility for holes of 0.02 cm2 V−1 s−1.
  • Item
    Observation of strontium segregation in LaAlO3/SrTiO3 and NdGaO3/SrTiO3 oxide heterostructures by X-ray photoemission spectroscopy
    (New York : American Institute of Physics, 2014) Treske, Uwe; Heming, Nadine; Knupfer, Martin; Büchner, Bernd; Koitzsch, Andreas; Di Gennaro, Emiliano; Scotti di Uccio, Umberto; Miletto Granozio, Fabio; Krause, Stefan
    LaAlO3 and NdGaO3 thin films of different thicknesses have been grown by pulsed laser deposition on TiO2-terminated SrTiO3 single crystals and investigated by soft X-ray photoemission spectroscopy. The surface sensitivity of the measurements has been tuned by varying photon energy hν and emission angle Θ. In contrast to the core levels of the other elements, the Sr 3d line shows an unexpected splitting for higher surface sensitivity, signaling the presence of a second strontium component. From our quantitative analysis we conclude that during the growth process Sr atoms diffuse away from the substrate and segregate at the surface of the heterostructure, possibly forming strontium oxide
  • Item
    Universal electronic structure of polar oxide hetero-interfaces
    (London : Nature Publishing Group, 2015) Treske, Uwe; Heming, Nadine; Knupfer, Martin; Büchner, Bernd; Di Gennaro, Emiliano; Khare, Amit; Di Uccio, Umberto Scotti; Granozio, Fabio Miletto; Krause, Stefan; Koitzsch, Andreas
    The electronic properties of NdGaO3/SrTiO3, LaGaO3/SrTiO3, and LaAlO3/SrTiO3 interfaces, all showing an insulator-to-metal transition as a function of the overlayer-thickness, are addressed in a comparative study based on x-ray absorption, x-ray photoemission and resonant photoemission spectroscopy. The nature of the charge carriers, their concentration and spatial distribution as well as the interface band alignments and the overall interface band diagrams are studied and quantitatively evaluated. The behavior of the three analyzed heterostructures is found to be remarkably similar. The valence band edge of all the three overlayers aligns to that of bulk SrTiO3. The near-interface SrTiO3 layer is affected, at increasing overlayer thickness, by the building-up of a confining potential. This potential bends both the valence and the conduction band downwards. The latter one crossing the Fermi energy in the proximity of the interface and determines the formation of an interfacial band offset growing as a function of thickness. Quite remarkably, but in agreement with previous reports for LaAlO3/SrTiO3, no electric field is detected inside any of the polar overlayers. The essential phenomenology emerging from our findings is discussed on the base of different alternative scenarios regarding the origin of interface carriers and their interaction with an intense photon beam.