Search Results

Now showing 1 - 3 of 3
  • Item
    Operation mechanism of high performance organic permeable base transistors with an insulated and perforated base electrode
    (Melville, NY : American Inst. of Physics, 2016) Kaschura, Felix; Fischer, Axel; Klinger, Markus P.; Doan, Duy Hai; Koprucki, Thomas; Glitzky, Annegret; Kasemann, Daniel; Widmer, Johannes; Leo, Karl
    The organic permeable base transistor is a vertical transistor architecture that enables high performance while maintaining a simple low-resolution fabrication. It has been argued that the charge transport through the nano-sized openings of the central base electrode limits the performance. Here, we demonstrate by using 3D drift-diffusion simulations that this is not the case in the relevant operation range. At low current densities, the applied base potential controls the number of charges that can pass through an opening and the opening is the current limiting factor. However, at higher current densities, charges accumulate within the openings and in front of the base insulation, allowing for an efficient lateral transport of charges towards the next opening. The on-state in the current-voltage characteristics reaches the maximum possible current given by space charge limited current transport through the intrinsic semiconductor layers. Thus, even a small effective area of the openings can drive huge current densities, and further device optimization has to focus on reducing the intrinsic layer thickness to a minimum.
  • Item
    From atomistic tight-binding theory to macroscale drift–diffusion: Multiscale modeling and numerical simulation of uni-polar charge transport in (In,Ga)N devices with random fluctuations
    (Melville, NY : American Inst. of Physics, 2021) O’Donovan, Michael; Chaudhuri, Debapriya; Streckenbach, Timo; Farrell, Patricio; Schulz, Stefan; Koprucki, Thomas
    Random alloy fluctuations significantly affect the electronic, optical, and transport properties of (In,Ga)N-based optoelectronic devices. Transport calculations accounting for alloy fluctuations currently use a combination of modified continuum-based models, which neglect to a large extent atomistic effects. In this work, we present a model that bridges the gap between atomistic theory and macroscopic transport models. To do so, we combine atomistic tight-binding theory and continuum-based drift–diffusion solvers, where quantum corrections are included via the localization landscape method. We outline the ingredients of this framework in detail and present first results for uni-polar electron transport in single and multi- (In,Ga)N quantum well systems. Overall, our results reveal that both random alloy fluctuations and quantum corrections significantly affect the current–voltage characteristics of uni-polar electron transport in such devices. However, our investigations indicate that the importance of quantum corrections and random alloy fluctuations can be different for single and multi-quantum well systems.
  • Item
    Symmetries in transmission electron microscopy imaging of crystals with strain
    (London : [Verlag nicht ermittelbar], 2022) Koprucki, Thomas; Maltsi, Anieza; Mielke, Alexander
    Transmission electron microscopy (TEM) images of strained crystals often exhibit symmetries, the source of which is not always clear. To understand these symmetries, we distinguish between symmetries that occur from the imaging process itself and symmetries of the inclusion that might affect the image. For the imaging process, we prove mathematically that the intensities are invariant under specific transformations. A combination of these invariances with specific properties of the strain profile can then explain symmetries observed in TEM images. We demonstrate our approach to the study of symmetries in TEM images using selected examples in the field of semiconductor nanostructures such as quantum wells and quantum dots.