Search Results

Now showing 1 - 5 of 5
  • Item
    Cold Atmospheric Plasma Jet as a Possible Adjuvant Therapy for Periodontal Disease
    (Basel : MDPI, 2021) Lima, Gabriela de Morais Gouvêa; Borges, Aline Chiodi; Nishime, Thalita Mayumi Castaldelli; Santana-Melo, Gabriela de Fatima; Kostov, Konstantin Georgiev; Mayer, Marcia Pinto Alves; Koga-Ito, Cristiane Yumi
    Due to the limitations of traditional periodontal therapies, and reported cold atmospheric plasma anti-inflammatory/antimicrobial activities, plasma could be an adjuvant therapy to periodontitis. Porphyromonas gingivalis was grown in blood agar. Standardized suspensions were plated on blood agar and plasma-treated for planktonic growth. For biofilm, dual-species Streptococcus gordonii + P. gingivalis biofilm grew for 48 h and then was plasma-treated. XTT assay and CFU counting were performed. Cytotoxicity was accessed immediately or after 24 h. Plasma was applied for 1, 3, 5 or 7 min. In vivo: Thirty C57BI/6 mice were subject to experimental periodontitis for 11 days. Immediately after ligature removal, animals were plasma-treated for 5 min once-Group P1 (n = 10); twice (Day 11 and 13)-Group P2 (n = 10); or not treated-Group S (n = 10). Mice were euthanized on day 15. Histological and microtomography analyses were performed. Significance level was 5%. Halo diameter increased proportionally to time of exposure contrary to CFU/mL counting. Mean/SD of fibroblasts viability did not vary among the groups. Plasma was able to inhibit P. gingivalis in planktonic culture and biofilm in a cell-safe manner. Moreover, plasma treatment in vivo, for 5 min, tends to improve periodontal tissue recovery, proportionally to the number of plasma applications.
  • Item
    Effect of Cold Atmospheric Plasma Jet Associated to Polyene Antifungals on Candida albicans Biofilms
    (Basel : MDPI, 2021) Leite, Lady Daiane Pereira; Oliveira, Maria Alcionéia Carvalho de; Vegian, Mariana Raquel da Cruz; Sampaio, Aline da Graça; Nishime, Thalita Mayumi Castaldelli; Kostov, Konstantin Georgiev; Koga-Ito, Cristiane Yumi
    The increasing incidence of antifungal resistance represents a great challenge in the medical area and, for this reason, new therapeutic alternatives for the treatment of fungal infections are urgently required. Cold atmospheric plasma (CAP) has been proposed as a promising alternative technique for the treatment of superficial candidiasis, with inhibitory effect both in vitro and in vivo. However, little is known on the association of CAP with conventional antifungals. The aim of this study was to evaluate the effects of the association between CAP and conventional polyene antifungals on Candida albicans biofilms. C. albicans SC 5314 and a clinical isolate were used to grow 24 or 48 h biofilms, under standardized conditions. After that, the biofilms were exposed to nystatin, amphotericin B and CAP, separately or in combination. Different concentrations of the antifungals and sequences of treatment were evaluated to establish the most effective protocol. Biofilms viability after the treatments was compared to negative control. Data were compared by One-way ANOVA and post hoc Tukey (5%). The results demonstrate that 5 min exposure to CAP showed more effective antifungal effect on biofilms when compared to nystatin and amphotericin B. Additionally, it was detected that CAP showed similar (but smaller in magnitude) effects when applied in association with nystatin and amphotericin B at 40 µg/mL and 60 µg/mL. Therefore, it can be concluded that the application of CAP alone was more effective against C. albicans biofilms than in combination with conventional polyene antifungal agents.
  • Item
    Simultaneous Treatment of Both Sides of the Polymer with a Conical-Shaped Atmospheric Pressure Plasma Jet
    (Basel : MDPI, 2023) Kodaira, Felipe Vicente de Paula; Leal, Bruno Henrique Silva; Tavares, Thayna Fernandes; Quade, Antje; Hein, Luis Rogerio de Oliveira; Chiappim, William; Kostov, Konstantin Georgiev
    A conical-shaped atmospheric pressure plasma jet (CS-APPJ) was developed to overcome a standard limitation of APPJs, which is their small treatment area. The CS-APPJs increase the treatment area but use the same gas flow. In the present work, polypropylene samples were treated by CS-APPJ and characterized by scanning electron microscope (SEM), the contact angle, Fourier-transformed infrared spectroscopy (FTIR), and X-ray photoelectron spectroscopy (XPS). It was observed that the treatment co-occurs on the face directly in contact with the plasma and on the opposite face (OF) of the samples, i.e., no contact. However, the treatment changed the chemical composition on each side; the OF is rougher than the direct contact face (DCF), probably due to the oxygen groups in excess at the DCF and nitrogen in quantity at the OF. Although simultaneous treatment of both sides of the sample occurs for most atmospheric plasma treatments, this phenomenon is not explored in the literature.
  • Item
    Different Radial Modification Profiles Observed on APPJ-Treated Polypropylene Surfaces according to the Distance between Plasma Outlet and Target
    (Basel : MDPI, 2022) do Nascimento, Fellype; Silva Leal, Bruno; Quade, Antje; Kostov, Konstantin Georgiev
    The plasma jet transfer technique relies on a conductive wire at floating potential, which, upon entering in contact with a primary discharge, is capable of igniting a small plasma plume at the distal end of a long flexible plastic tube. In this work, two different long tube configurations were employed for the surface modification of polypropylene (PP) samples using argon as the working gas. One of the jet configurations has a thin copper (Cu) wire, which was installed inside the long tube. In the other configuration, the floating electrode is a metallic mesh placed between two plastic tubes in a coaxial arrangement. In the first case, the tip of the Cu wire is in direct contact with the working gas at the plasma outlet, whereas, in the second, the inner plastic tube provides an additional dielectric barrier that prevents the conductor from being in contact with the gas. Water contact angle (WCA) measurements on treated PP samples revealed that different surface modification radial profiles are formed when the distance (d) between the plasma outlet and target is changed. Moreover, it was found that the highest WCA reduction does not always occur at the point where the plasma impinges the surface of the material, especially when the d value is small. Through X-ray photoelectron spectroscopy (XPS) analysis, it was confirmed that the WCA values are directly linked to the oxygen-functional groups formed on the PP surfaces after the plasma treatment. An analysis of the WCA measurements along the surface, as well as their temporal evolution, together with the XPS data, suggest that, when the treatment is performed at small d values, the plasma jet removes some functional groups at the point where the plasma hits the surface, thus leading to peculiar WCA profiles.
  • Item
    Simultaneous Treatment of Both Sides of the Polymer with a Conical-Shaped Atmospheric Pressure Plasma Jet
    (Basel : MDPI, 2023) Kodaira, Felipe Vicente de Paula; Leal, Bruno Henrique Silva; Tavares, Thayna Fernandes; Quade, Antje; Hein, Luis Rogerio de Oliveira; Chiappim, William; Kostov, Konstantin Georgiev
    A conical-shaped atmospheric pressure plasma jet (CS-APPJ) was developed to overcome a standard limitation of APPJs, which is their small treatment area. The CS-APPJs increase the treatment area but use the same gas flow. In the present work, polypropylene samples were treated by CS-APPJ and characterized by scanning electron microscope (SEM), the contact angle, Fourier-transformed infrared spectroscopy (FTIR), and X-ray photoelectron spectroscopy (XPS). It was observed that the treatment co-occurs on the face directly in contact with the plasma and on the opposite face (OF) of the samples, i.e., no contact. However, the treatment changed the chemical composition on each side; the OF is rougher than the direct contact face (DCF), probably due to the oxygen groups in excess at the DCF and nitrogen in quantity at the OF. Although simultaneous treatment of both sides of the sample occurs for most atmospheric plasma treatments, this phenomenon is not explored in the literature.