Search Results

Now showing 1 - 2 of 2
  • Item
    Chronostratigraphy of silt-dominated Pleistocene periglacial slope deposits on Mt. Ślęża (SW, Poland): Palaeoenvironmental and pedogenic significance
    (New York, NY [u.a.] : Elsevier, 2020) Waroszewski, Jaroslaw; Sprafke, Tobias; Kabala, Cezary; Musztyfaga, Elżbieta; Kot, Aleksandra; Tsukamoto, Sumiko; Frechen, Manfred
    Slope deposits with aeolian silt admixture are a widespread parent material of soils in the temperate zone but may be neglected when rates of soil production are quantified. The concept of periglacial cover beds differentiates slope deposits with or without aeolian silt admixture; yet there is a remaining debate on processes and the timing of their formation. A previous study done by us at Mt. Ślęża, SW Poland, concluded that slope deposits with variable aeolian silt admixture, or its lack, have a significant influence on the pathway of soil formation. The present work builds upon this finding, by adding further granulometric and micromorphological data from three representative profiles along a toposequence, in order to refine our understanding of local slope deposits and soil formation. Additionally, seven numerical ages using luminescence dating provide a chronological framework for our reconstructions and allow linking the forming processes of these pedosedimentary records to regional palaeoenvironmental conditions. The oldest aeolian deposits are of Middle Pleistocene age (>280 ± 19 ka) with interlayered palaeosol (marine isotope stage [MIS] 9 or older). Late Pleistocene slope deposits encompass the maximum loess thickness and are dated to MIS 2. Luminescence ages from the upper layers indicate shallow reworking, which we tentatively correlate to the Younger Dryas (YD). Two profiles with thick loess mantles have strong clay illuviation features, presumably formed during the Holocene. However, weak clay illuviation in the third profile with a thin loess mantle (having an age of YD) over granite regolith seems to have occurred before the Holocene, as only fragmented clay coatings (probably MIS 2 pedogenesis) could be found. © 2020 The Authors
  • Item
    Provenance and paleoenvironmental context of the Late Pleistocene thin aeolian silt mantles in southwestern Poland – A widespread parent material for soils
    (New York, NY [u.a.] : Elsevier, 2021) Waroszewski, Jaroslaw; Pietranik, Anna; Sprafke, Tobias; Kabała, Cezary; Frechen, Manfred; Jary, Zdzisław; Kot, Aleksandra; Tsukamoto, Sumiko; Meyer-Heintze, Simon; Krawczyk, Marcin; Łabaz, Beata; Schultz, Bernhard; Erban Kochergina, Yulia V.
    Thin loess deposits are widespread soil parent materials and important archives for paleoenvironmental reconstruction. The origin of loess in SW Poland is attributed to the Great Odra Valley (GOV), following the general concept that large rivers play a major role in regional silt supply. Yet, the precise provenance (glacier sources and/or local rocks) of silts, possibly deflated from dry GOV braided riverbeds, is not clear. Our study of thin and thick loess mantles in SW Poland for the first time indicates the provenance of thin loess based on mineralogical (MLA-SEM) and isotopic analyses (143Nd/144Nd, 87Sr/86Sr). Luminescence ages of five localities point to thin loess mantle formation during and shortly (23.0 to 17.7 ka yr) after the Last Glacial Maximum (LGM). Our isotopic data indicate that thin loess deposits in SW Poland are the mixtures of two main components – local Sudetic and Scandinavian, the latter delivered by the Fennoscandian ice sheet (FIS). Also, detailed analyses of heavy minerals show that a single mineral (e.g., hornblende) may come from both Sudetic and Scandinavian sources. This research highlights the role of the (Pleistocene) GOV in collecting and homogenizing materials, while supplying the region with fine particles to be deflated by paleowinds from open surfaces. Anomalies in mineralogy and isotopic composition are connected with influence of Sudetic mountain rivers and locally blowing silt material by katabatic winds. Regional grain size differentiation of thin loess mantles explains transport distance and altitude. © 2021 The Authors