Search Results

Now showing 1 - 5 of 5
  • Item
    Self-Assembly of Polymer-Modified FePt Magnetic Nanoparticles and Block Copolymers
    (Basel : MDPI, 2023) Hartmann, Frank; Bitsch, Martin; Niebuur, Bart-Jan; Koch, Marcus; Kraus, Tobias; Dietz, Christian; Stark, Robert W.; Everett, Christopher R.; Müller-Buschbaum, Peter; Janka, Oliver; Gallei, Markus
    The fabrication of nanocomposites containing magnetic nanoparticles is gaining interest as a model for application in small electronic devices. The self-assembly of block copolymers (BCPs) makes these materials ideal for use as a soft matrix to support the structural ordering of the nanoparticles. In this work, a high-molecular-weight polystyrene-b-poly(methyl methacrylate) block copolymer (PS-b-PMMA) was synthesized through anionic polymerization. The influence of the addition of different ratios of PMMA-coated FePt nanoparticles (NPs) on the self-assembled morphology was investigated using transmission electron microscopy (TEM) and small-angle X-ray scattering (SAXS). The self-assembly of the NPs inside the PMMA phase at low particle concentrations was analyzed statistically, and the negative effect of higher particle ratios on the lamellar BCP morphology became visible. The placement of the NPs inside the PMMA phase was also compared to theoretical descriptions. The magnetic addressability of the FePt nanoparticles inside the nanocomposite films was finally analyzed using bimodal magnetic force microscopy and proved the magnetic nature of the nanoparticles inside the microphase-separated BCP films.
  • Item
    Ageing of alkylthiol-stabilized gold nanoparticles
    (Hoboken, NJ : Wiley, 2015) Lacava, Johann; Weber, Anika; Kraus, Tobias
    The ageing of spherical gold nanoparticles having 6-nm-diameter cores and a ligand shell of dodecanethiol is investigated under different storage conditions. Losses caused by agglomeration and changes in optical particle properties are quantified. Changes in colloidal stability are probed by analytical centrifugation in a polar solvent mixture. Chemical changes are detected by elementary analysis of particles and solvent. Fractionation occurs under all storage conditions. Ageing is not uniform but broadens the property distributions of the particles. Small-number statistics in the ligand shell density and the morphological heterogeneity of particles are possible explanations. Washing steps exacerbate ageing, a process that could not be fully reversed by excess ligands. Dry storage is not preferable to storage in solvent. Storage under inert argon atmosphere reduces losses more than all other conditions but could not prevent it entirely.
  • Item
    X-ray imaging with scintillator-sensitized hybrid organic photodetectors
    (London : Nature Publishing Group, 2015) Büchele, Patric; Richter, Moses; Tedde, Sandro F.; Matt, Gebhard J.; Ankah, Genesis N.; Fischer, Rene; Biele, Markus; Metzger, Wilhelm; Lilliu, Samuele; Bikondoa, Oier; Macdonald, J. Emyr; Brabec, Christoph J.; Kraus, Tobias; Lemmer, Uli; Schmidt, Oliver
    Medical X-ray imaging requires cost-effective and high-resolution flat-panel detectors for the energy range between 20 and 120 keV. Solution-processed photodetectors provide the opportunity to fabricate detectors with a large active area at low cost. Here, we present a disruptive approach that improves the resolution of such detectors by incorporating terbium-doped gadolinium oxysulfide scintillator particles into an organic photodetector matrix. The X-ray induced light emission from the scintillators is absorbed within hundreds of nanometres, which is negligible compared with the pixel size. Hence, optical crosstalk, a limiting factor in the resolution of scintillator-based X-ray detectors, is minimized. The concept is validated with a 256 × 256 pixel detector with a resolution of 4.75 lp mm−1 at a MTF = 0.2, significantly better than previous stacked scintillator-based flat-panel detectors. We achieved a resolution that proves the feasibility of solution-based detectors in medical applications. Time-resolved electrical characterization showed enhanced charge carrier mobility with increased scintillator filling, which is explained by morphological changes.
  • Item
    The role of ligands in coinage-metal nanoparticles for electronics
    (Frankfurt, M. : Beilstein-Institut zur Förderung der Chemischen Wissenschaften, 2017) Kanelidis, Ioannis; Kraus, Tobias
    Coinage-metal nanoparticles are key components of many printable electronic inks. They can be combined with polymers to form conductive composites and have been used as the basis of molecular electronic devices. This review summarizes the multidimensional role of surface ligands that cover their metal cores. Ligands not only passivate crystal facets and determine growth rates and shapes; they also affect size and colloidal stability. Particle shapes can be tuned via the ligand choice while ligand length, size, ω-functionalities, and chemical nature influence shelf-life and stability of nanoparticles in dispersions. When particles are deposited, ligands affect the electrical properties of the resulting film, the morphology of particle films, and the nature of the interfaces. The effects of the ligands on sintering, cross-linking, and self-assembly of particles in electronic materials are discussed.
  • Item
    Microgravity Removes Reaction Limits from Nonpolar Nanoparticle Agglomeration
    (Weinheim : Wiley-VCH, 2022) Pyttlik, Andrea; Kuttich, Björn; Kraus, Tobias
    Gravity can affect the agglomeration of nanoparticles by changing convection and sedimentation. The temperature-induced agglomeration of hexadecanethiol-capped gold nanoparticles in microgravity (µ g) is studied at the ZARM (Center of Applied Space Technology and Microgravity) drop tower and compared to their agglomeration on the ground (1 g). Nonpolar nanoparticles with a hydrodynamic diameter of 13 nm are dispersed in tetradecane, rapidly cooled from 70 to 10 °C to induce agglomeration, and observed by dynamic light scattering at a time resolution of 1 s. The mean hydrodynamic diameters of the agglomerates formed after 8 s in microgravity are 3 times (for low initial concentrations) to 5 times (at high initial concentrations) larger than on the ground. The observations are consistent with an agglomeration process that is closer to the reaction limit on thground and closer to the diffusion limit in microgravity.