Search Results

Now showing 1 - 6 of 6
Loading...
Thumbnail Image
Item

Screening of Different Carbon Nanotubes in Melt-Mixed Polymer Composites with Different Polymer Matrices for Their Thermoelectrical Properties

2019-12-7, Krause, Beate, Barbier, Carine, Levente, Juhasz, Klaus, Maxim, Pötschke, Petra

The aim of this study is to reveal the influences of carbon nanotube (CNT) and polymer type as well as CNT content on electrical conductivity, Seebeck coefficient (S), and the resulting power factor (PF) and figure of merit (ZT). Different commercially available and laboratory made CNTs were used to prepare melt-mixed composites on a small scale. CNTs typically lead to p-type composites with positive S-values. This was found for the two types of multi-walled CNTs (MWCNT) whereby higher Seebeck coefficient in the corresponding buckypapers resulted in higher values also in the composites. Nitrogen doped MWCNTs resulted in negative S-values in the buckypapers as well as in the polymer composites. When using single-walled CNTs (SWCNTs) with a positive S-value in the buckypapers, positive (polypropylene (PP), polycarbonate (PC), poly (vinylidene fluoride) (PVDF), and poly(butylene terephthalate) (PBT)) or negative (polyamide 66 (PA66), polyamide 6 (PA6), partially aromatic polyamide (PARA), acrylonitrile butadiene styrene (ABS)) S-values were obtained depending on the matrix polymer and SWCNT type. The study shows that the direct production of n-type melt-mixed polymer composites from p-type commercial SWCNTs with relatively high Seebeck coefficients is possible. The highest Seebeck coefficients obtained in this study were 66.4 µV/K (PBT/7 wt % SWCNT Tuball) and −57.1 µV/K (ABS/0.5 wt % SWCNT Tuball) for p-and n-type composites, respectively. The highest power factor and ZT of 0.28 µW/m·K2 and 3.1 × 10−4, respectively, were achieved in PBT with 4 wt % SWCNT Tuball.

Loading...
Thumbnail Image
Item

Dispersability and particle size distribution of CNTs in an aqueous surfactant dispersion as a function of ultrasonic treatment time

2010, Krause, Beate, Mende, Mandy, Pötschke, Petra, Petzold, Gudrun

The dispersability of carbon nanotubes (CNTs) was assessed by studying the sedimentation of CNTs dispersed in aqueous surfactant solutions at different ultrasonication treatment times using a LUMiSizer® apparatus under centrifugal forces. Different commercially available multiwalled CNTs, namely Baytubes® C150P, Nanocyl™ NC7000, Arkema Graphistrength® C100, and FutureCarbon CNT-MW showing quite different kinetics were compared. In addition, the particle size distributions were analyzed using dynamic light scattering and centrifugal separation analysis. The best dispersabilities were found for Nanocyl™ NC7000 and FutureCarbon CNT-MW; to prepare stable dispersions of Baytubes® C150P or Graphistrength® C100 five times the energy was needed. As a result of the centrifugal separation analysis, it was concluded that Nanocyl™ NC7000 and Baytubes® C150P were dispersed as single nanotubes using ultrasonic treatment whereas small agglomerates or bundles are existing in dispersions containing FutureCarbon CNT-MW and Graphistrength® C100. © 2010 Elsevier Ltd. All rights reserved.

Loading...
Thumbnail Image
Item

Electrically Conductive Polyetheretherketone Nanocomposite Filaments: From Production to Fused Deposition Modeling

2018-8-18, Gonçalves, Jordana, Lima, Patrícia, Krause, Beate, Pötschke, Petra, Lafont, Ugo, Gomes, José R., Abreu, Cristiano S., Paiva, Maria C., Covas, José A.

The present work reports the production and characterization of polyetheretherketone (PEEK) nanocomposite filaments incorporating carbon nanotubes (CNT) and graphite nanoplates (GnP), electrically conductive and suitable for fused deposition modeling (FDM) processing. The nanocomposites were manufactured by melt mixing and those presenting electrical conductivity near 10 S/m were selected for the production of filaments for FDM. The extruded filaments were characterized for mechanical and thermal conductivity, polymer crystallinity, thermal relaxation, nanoparticle dispersion, thermoelectric effect, and coefficient of friction. They presented electrical conductivity in the range of 1.5 to 13.1 S/m, as well as good mechanical performance and higher thermal conductivity compared to PEEK. The addition of GnP improved the composites' melt processability, maintained the electrical conductivity at target level, and reduced the coefficient of friction by up to 60%. Finally, three-dimensional (3D) printed test specimens were produced, showing a Young's modulus and ultimate tensile strength comparable to those of the filaments, but a lower strain at break and electrical conductivity. This was attributed to the presence of large voids in the part, revealing the need for 3D printing parameter optimization. Finally, filament production was up-scaled to kilogram scale maintaining the properties of the research-scale filaments.

Loading...
Thumbnail Image
Item

Correlation of carbon nanotube dispersability in aqueous surfactant solutions and polymers

2009, Krause, Beate, Petzold, Gudrun, Pegel, Sven, Pötschke, Petra

In order to assess the dispersability of carbon nanotube materials, tubes produced under different synthesis conditions were dispersed in aqueous surfactant solutions and the sedimentation behaviour under centrifugation forces was investigated using a LUMiFuge stability analyzer. The electrical percolation threshold of the nanotubes after melt mixing in polyamide 6.6 was determined and the state of dispersion was studied. As a general tendency, the nanotubes having better aqueous dispersion stability showed lower electrical percolation threshold and better nanotube dispersion in the composites. This indicates that the investigation of the stability of aqueous dispersions is also able to give information about the nanotubes inherent dispersability in polymer melts, both strongly influenced by the entanglement and agglomerate structure of the tubes within the as-produced nanotube materials. The shape of the nanotubes in the aqueous dispersions was assessed using a SYSMEX flow particle image analyzer and found to correspond to the shape observed from cryofractured surfaces of the polymer composites. © 2008 Elsevier Ltd. All rights reserved.

Loading...
Thumbnail Image
Item

Blend Structure and n-Type Thermoelectric Performance of PA6/SAN and PA6/PMMA Blends Filled with Singlewalled Carbon Nanotubes

2021-4-28, Krause, Beate, Liguoro, Alice, Pötschke, Petra

The present study investigates how the formation of melt-mixed immiscible blends based on PA6/SAN and PA6/PMMA filled with single walled nanotubes (SWCNTs) affects the thermoelectric (TE) properties. In addition to the detailed investigation of the blend morphology with compositions between 100/0 wt.% and 50/50 wt.%, the thermoelectric properties are investigated on blends with different SWCNT concentrations (0.25–3.0 wt.%). Both PA6 and the blend composites with the used type of SWCNTs showed negative Seebeck coefficients. It was shown that the PA6 matrix polymer, in which the SWCNTs are localized, mainly influenced the thermoelectric properties of blends with high SWCNT contents. By varying the blend composition, an increase in the absolute Seebeck coefficient, power factor (PF), and figure of merit (ZT) was achieved compared to the PA6 composite which is mainly related to the selective localization and enrichment of SWCNTs in the PA6 matrix at constant SWCNT loading. The maximum PFs achieved were 0.22 µW/m·K2 for PA6/SAN/SWCNT 70/30/3 wt.% and 0.13 µW/m·K2 for PA6/PMMA/SWCNT 60/40/3 wt.% compared to 0.09 µW/m·K2 for PA6/3 wt.% SWCNT which represent increases to 244% and 144%, respectively. At higher PMMA or SAN concentration, the change from matrix-droplet to a co-continuous morphology started, which, despite higher SWCNT enrichment in the PA6 matrix, disturbed the electrical conductivity, resulting in reduced PFs with still increasing Seebeck coefficients. At SWCNT contents between 0.5 and 3 wt.% the increase in the absolute Seebeck coefficient was compensated by lower electrical conductivity resulting in lower PF and ZT as compared to the PA6 composites.

Loading...
Thumbnail Image
Item

Methods to characterize the dispersability of carbon nanotubes and their length distribution

2012, Krause, Beate, Mende, Mandy, Petzold, Gudrun, Boldt, Regine, Pötschke, Petra

Two main properties of carbon nanotube (CNT) materials are discussed in this contribution. First, a method to characterize the dispersability of CNT materials in aqueous surfactant solutions in presented, which also allows conclusions towards the dispersability in other media, like polymer melts. On the other hand it is shown, how the length of CNTs before and after processing, e.g., after melt mixing with thermoplastics, can be quantified. Both methods are illustrated with examples and the practical relevance is shown. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.