Search Results

Now showing 1 - 10 of 16
  • Item
    Climate change and potential distribution of potato (Solanum tuberosum) crop cultivation in Pakistan using Maxent
    (Springfield, MO : AIMS Press, 2021) Khalil, Tayyaba; Asad, Saeed A.; Khubaib, Nusaiba; Baig, Ayesha; Atif, Salman; Umar, Muhammad; Kropp, Jürgen P.; Pradhan, Prajal; Baig, Sofia
    The impacts of climate change are projected to become more intense and frequent. One of the indirect impacts of climate change is food insecurity. Agriculture in Pakistan, measured fourth best in the world, is already experiencing visible adverse impacts of climate change. Among many other food sources, potato crop remains one of the food security crops for developing nations. Potatoes are widely cultivated in Pakistan. To assess the impact of climate change on potato crop in Pakistan, it is imperative to analyze its distribution under future climate change scenarios using Species Distribution Models (SDMs). Maximum Entropy Model is used in this study to predict the spatial distribution of Potato in 2070 using two CMIP5 models for two climate change scenarios (RCP 4.5 and RCP 8.5). 19 Bioclimatic variables are incorporated along with other contributing variables like soil type, elevation and irrigation. The results indicate slight decrease in the suitable area for potato growth in RCP 4.5 and drastic decrease in suitable area in RCP 8.5 for both models. The performance evaluation of the model is based on AUC. AUC value of 0.85 suggests the fitness of the model and thus, it is applicable to predict the suitable climate for potato production in Pakistan. Sustainable potato cultivation is needed to increase productivity in developing countries while promoting better resource management and optimization.
  • Item
    A Gini approach to spatial CO2 emissions
    (San Francisco, California, US : PLOS, 2020) Zhou, Bin; Thies, Stephan; Gudipudi, Ramana; Lüdeke, Matthias K.B.; Kropp, Jürgen P.; Rybski, Diego
    Combining global gridded population and fossil fuel based CO2 emission data at 1 km scale, we investigate the spatial origin of CO2 emissions in relation to the population distribution within countries. We depict the correlations between these two datasets by a quasi-Lorenz curve which enables us to discern the individual contributions of densely and sparsely populated regions to the national CO2 emissions. We observe pronounced country-specific characteristics and quantify them using an indicator resembling the Gini-index. As demonstrated by a robustness test, the Gini-index for each country arise from a compound distribution between the population and emissions which differs among countries. Relating these indices with the degree of socio-economic development measured by per capita Gross Domestic Product (GDP) at purchase power parity, we find a strong negative correlation between the two quantities with a Pearson correlation coefficient of -0.71. More specifically, this implies that in developing countries locations with large population tend to emit relatively more CO2, and in developed countries the opposite tends to be the case. Based on the relation to urban scaling, we discuss the implications for CO2 emissions from cities. Our results show that general statements with regard to the (in)efficiency of large cities should be avoided as it is subject to the socio-economic development of respective countries. Concerning the political relevance, our results suggest a differentiated spatial prioritization in deploying climate change mitigation measures in cities for developed and developing countries.
  • Item
    Characterizing the sectoral development of cities
    (San Francisco, California, US : PLOS, 2021) Rybski, Diego; Pradhan, Prajal; Shutters, Shade T.; Butsic, Van; Kropp, Jürgen P.; Xue, Bing
    Previous research has identified a predictive model of how a nation’s distribution of gross domestic product (GDP) among agriculture (a), industry (i), and services (s) changes as a country develops. Here we use this national model to analyze the composition of GDP for US Metropolitan Statistical Areas (MSA) over time. To characterize the transfer of GDP shares between the sectors in the course of economic development we explore a simple system of differential equations proposed in the country-level model. Fitting the model to more than 120 MSAs we find that according to the obtained parameters MSAs can be classified into 6 groups (consecutive, high industry, re-industrializing; each of them also with reversed development direction). The consecutive transfer (a → i → s) is common but does not represent all MSAs examined. At the 95% confidence level, 40% of MSAs belong to types exhibiting an increasing share of GDP from agriculture. In California, such MSAs, which we classify as part of an agriculture renaissance, are found in the Central Valley.
  • Item
    On the influence of density and morphology on the Urban Heat Island intensity
    ([London] : Nature Publishing Group UK, 2020) Li, Yunfei; Schubert, Sebastian; Kropp, Jürgen P.; Rybski, Diego
    The canopy layer urban heat island (UHI) effect, as manifested by elevated near-surface air temperatures in urban areas, exposes urban dwellers to additional heat stress in many cities, specially during heat waves. We simulate the urban climate of various generated cities under the same weather conditions. For mono-centric cities, we propose a linear combination of logarithmic city area and logarithmic gross building volume, which also captures the influence of building density. By studying various city shapes, we generalise and propose a reduced form to estimate UHI intensities based only on the structure of urban sites, as well as their relative distances. We conclude that in addition to the size, the UHI intensity of a city is directly related to the density and an amplifying effect that urban sites have on each other. Our approach can serve as a UHI rule of thumb for the comparison of urban development scenarios.
  • Item
    Effects of changing population or density on urban carbon dioxide emissions
    ([London] : Nature Publishing Group UK, 2019) Ribeiro, Haroldo V.; Rybski, Diego; Kropp, Jürgen P.
    The question of whether urbanization contributes to increasing carbon dioxide emissions has been mainly investigated via scaling relationships with population or population density. However, these approaches overlook the correlations between population and area, and ignore possible interactions between these quantities. Here, we propose a generalized framework that simultaneously considers the effects of population and area along with possible interactions between these urban metrics. Our results significantly improve the description of emissions and reveal the coupled role between population and density on emissions. These models show that variations in emissions associated with proportionate changes in population or density may not only depend on the magnitude of these changes but also on the initial values of these quantities. For US areas, the larger the city, the higher is the impact of changing its population or density on its emissions; but population changes always have a greater effect on emissions than population density.
  • Item
    Costs of sea dikes – regressions and uncertainty estimates
    (München : European Geopyhsical Union, 2017) Lenk, Stephan; Rybski, Diego; Heidrich, Oliver; Dawson, Richard J.; Kropp, Jürgen P.
    Failure to consider the costs of adaptation strategies can be seen by decision makers as a barrier to implementing coastal protection measures. In order to validate adaptation strategies to sea-level rise in the form of coastal protection, a consistent and repeatable assessment of the costs is necessary. This paper significantly extends current knowledge on cost estimates by developing – and implementing using real coastal dike data – probabilistic functions of dike costs. Data from Canada and the Netherlands are analysed and related to published studies from the US, UK, and Vietnam in order to provide a reproducible estimate of typical sea dike costs and their uncertainty. We plot the costs divided by dike length as a function of height and test four different regression models. Our analysis shows that a linear function without intercept is sufficient to model the costs, i.e. fixed costs and higher-order contributions such as that due to the volume of core fill material are less significant. We also characterise the spread around the regression models which represents an uncertainty stemming from factors beyond dike length and height. Drawing an analogy with project cost overruns, we employ log-normal distributions and calculate that the range between 3x and x∕3 contains 95 % of the data, where x represents the corresponding regression value. We compare our estimates with previously published unit costs for other countries. We note that the unit costs depend not only on the country and land use (urban/non-urban) of the sites where the dikes are being constructed but also on characteristics included in the costs, e.g. property acquisition, utility relocation, and project management. This paper gives decision makers an order of magnitude on the protection costs, which can help to remove potential barriers to developing adaptation strategies. Although the focus of this research is sea dikes, our approach is applicable and transferable to other adaptation measures.
  • Item
    The size distribution, scaling properties and spatial organization of urban clusters: A global and regional percolation perspective
    (Basel : MDPI, 2016) Fluschnik, Till; Kriewald, Steffen; Cantú Ros, Anselmo García; Zhou, Bin; Reusser, Dominik E.; Kropp, Jürgen P.; Rybski, Diego
    Human development has far-reaching impacts on the surface of the globe. The transformation of natural land cover occurs in different forms, and urban growth is one of the most eminent transformative processes. We analyze global land cover data and extract cities as defined by maximally connected urban clusters. The analysis of the city size distribution for all cities on the globe confirms Zipf’s law. Moreover, by investigating the percolation properties of the clustering of urban areas we assess the closeness to criticality for various countries. At the critical thresholds, the urban land cover of the countries undergoes a transition from separated clusters to a gigantic component on the country scale. We study the Zipf-exponents as a function of the closeness to percolation and find a systematic dependence, which could be the reason for deviating exponents reported in the literature. Moreover, we investigate the average size of the clusters as a function of the proximity to percolation and find country specific behavior. By relating the standard deviation and the average of cluster sizes—analogous to Taylor’s law—we suggest an alternative way to identify the percolation transition. We calculate spatial correlations of the urban land cover and find long-range correlations. Finally, by relating the areas of cities with population figures we address the global aspect of the allometry of cities, finding an exponent δ ≈ 0.85, i.e., large cities have lower densities.
  • Item
    The decarbonisation of Europe powered by lifestyle changes
    (Bristol : IOP Publ., 2021) Costa, Luis; Moreau, Vincent; Thurm, Boris; Yu, Wusheng; Clora, Francesco; Baudry, Gino; Warmuth, Hannes; Hezel, Bernd; Seydewitz, Tobias; Rankovic, Ana; Kelly, Garret; Kropp, Jürgen P.
    Decision makers increasingly recognise the importance of lifestyle changes in reaching low emission targets. How the mitigation potential of changes in mobility, dietary, housing or consumption behaviour compare to those of ambitious technological changes in terms of decarbonisation remains a key question. To evaluate the interplay of behaviour and technological changes, we make use of the European Calculator model and show that changes in behaviour may contribute more than 20% of the overall greenhouse gas (GHG) emission reductions required for net-zero by 2050. Behaviour and technology-oriented scenarios are tested individually and in combination for the EU plus the UK and Switzerland. The impacts of behavioural change vary across sectors, with significant GHG emission reduction potential and broader benefits. Changes in travel behaviour limit the rising demand for electricity, natural resources and infrastructure costs from the electrification of passenger transport. Adopting a healthy diet reduces emissions substantially compared to intensifying agricultural practices, while at the same time making cropland available for conservation or bioenergy crops. The trade-offs between energy and food may be substantially alleviated when deploying technological and behavioural changes simultaneously. The results suggest that without behavioural change, the dependency of Europe on carbon removal technologies for its net-zero ambitions increases. Structural changes will be necessary to achieve full decarbonisation by 2050, yet changes in lifestyles are crucial, contributing to achieving climate targets sooner.
  • Item
    A systematic study of sustainable development goal (SDG) interactions
    (Hoboken, NJ : Wiley, 2017) Pradhan, Prajal; Costa, Luís; Rybski, Diego; Lucht, Wolfgang; Kropp, Jürgen P.
    Sustainable development goals (SDGs) have set the 2030 agenda to transform our world by tackling multiple challenges humankind is facing to ensure well‐being, economic prosperity, and environmental protection. In contrast to conventional development agendas focusing on a restricted set of dimensions, the SDGs provide a holistic and multidimensional view on development. Hence, interactions among the SDGs may cause diverging results. To analyze the SDG interactions we systematize the identification of synergies and trade‐offs using official SDG indicator data for 227 countries. A significant positive correlation between a pair of SDG indicators is classified as a synergy while a significant negative correlation is classified as a trade‐off. We rank synergies and trade‐offs between SDGs pairs on global and country scales in order to identify the most frequent SDG interactions. For a given SDG, positive correlations between indicator pairs were found to outweigh the negative ones in most countries. Among SDGs the positive and negative correlations between indicator pairs allowed for the identification of particular global patterns. SDG 1 (No poverty) has synergetic relationship with most of the other goals, whereas SDG 12 (Responsible consumption and production) is the goal most commonly associated with trade‐offs. The attainment of the SDG agenda will greatly depend on whether the identified synergies among the goals can be leveraged. In addition, the highlighted trade‐offs, which constitute obstacles in achieving the SDGs, need to be negotiated and made structurally nonobstructive by deeper changes in the current strategies.
  • Item
    The COVID‐19 Pandemic Not Only Poses Challenges, but Also Opens Opportunities for Sustainable Transformation
    (Hoboken, NJ : Wiley-Blackwell, 2021) Pradhan, Prajal; Subedi, Daya Raj; Khatiwada, Dilip; Joshi, Kirti Kusum; Kafle, Sagar; Chhetri, Raju Pandit; Dhakal, Shobhakar; Gautam, Ambika Prasad; Khatiwada, Padma Prasad; Mainaly, Jony; Onta, Sharad; Pandey, Vishnu Prasad; Parajuly, Keshav; Pokharel, Sijal; Satyal, Poshendra; Singh, Devendra Raj; Talchabhadel, Rocky; Tha, Rupesh; Thapa, Bhesh Raj; Adhikari, Kamal; Adhikari, Shankar; Chandra Bastakoti, Ram; Bhandari, Pitambar; Bharati, Saraswoti; Bhusal, Yub Raj; Bahadur BK, Man; Bogati, Ramji; Kafle, Simrin; Khadka, Manohara; Khatiwada, Nawa Raj; Lal, Ajay Chandra; Neupane, Dinesh; Neupane, Kaustuv Raj; Ojha, Rajit; Regmi, Narayan Prasad; Rupakheti, Maheswar; Sapkota, Alka; Sapkota, Rupak; Sharma, Mahashram; Shrestha, Gitta; Shrestha, Indira; Shrestha, Khadga Bahadur; Tandukar, Sarmila; Upadhyaya, Shyam; Kropp, Jürgen P.; Bhuju, Dinesh Raj
    The COVID-19 pandemic has impacted social, economic, and environmental systems worldwide, slowing down and reversing the progress made in achieving the Sustainable Development Goals (SDGs). SDGs belong to the 2030 Agenda to transform our world by tackling humankind's challenges to ensure well-being, economic prosperity, and environmental protection. We explore the potential impacts of the pandemic on SDGs for Nepal. We followed a knowledge co-creation process with experts from various professional backgrounds, involving five steps: online survey, online workshop, assessment of expert's opinions, review and validation, and revision and synthesis. The pandemic has negatively impacted most SDGs in the short term. Particularly, the targets of SDG 1, 4, 5, 8, 9, 10, 11, and 13 have and will continue to have weakly to moderately restricting impacts. However, a few targets of SDG 2, 3, 6, and 11 could also have weakly promoting impacts. The negative impacts have resulted from impeding factors linked to the pandemic. Many of the negative impacts may subside in the medium and long terms. The key five impeding factors are lockdowns, underemployment and unemployment, closure of institutions and facilities, diluted focus and funds for non-COVID-19-related issues, and anticipated reduction in support from development partners. The pandemic has also opened a window of opportunity for sustainable transformation, which is short-lived and narrow. These opportunities are lessons learned for planning and action, socio-economic recovery plan, use of information and communication technologies and the digital economy, reverse migration and “brain gain,” and local governments' exercising authorities.