Search Results

Now showing 1 - 6 of 6
  • Item
    PhysioSkin: Rapid Fabrication of Skin-Conformal Physiological Interfaces
    (New York,NY,United States : Association for Computing Machinery, 2020) Nittala, Aditya Shekhar; Khan, Arshad; Kruttwig, Klaus; Kraus, Tobias; Steimle, Jürgen; Bernhaupt, Regina
    Advances in rapid prototyping platforms have made physiological sensing accessible to a wide audience. However, off-the-shelf electrodes commonly used for capturing biosignals are typically thick, non-conformal and do not support customization. We present PhysioSkin, a rapid, do-it-yourself prototyping method for fabricating custom multi-modal physiological sensors, using commercial materials and a commodity desktop inkjet printer. It realizes ultrathin skin-conformal patches (~1μm) and interactive textiles that capture sEMG, EDA and ECG signals. It further supports fabricating devices with custom levels of thickness and stretchability. We present detailed fabrication explorations on multiple substrate materials, functional inks and skin adhesive materials. Informed from the literature, we also provide design recommendations for each of the modalities. Evaluation results show that the sensor patches achieve a high signal-to-noise ratio. Example applications demonstrate the functionality and versatility of our approach for prototyping a next generation of physiological devices that intimately couple with the human body.
  • Item
    Like a Second Skin: Understanding How Epidermal Devices Affect Human Tactile Perception
    (New York,NY,United States : Association for Computing Machinery, 2019) Nittala, Aditya Shekhar; Kruttwig, Klaus; Lee, Jaeyeon; Bennewitz, Roland; Arzt, Eduard; Steimle, Jürgen; Brewster, Stephen
    The emerging class of epidermal devices opens up new opportunities for skin-based sensing, computing, and interaction. Future design of these devices requires an understanding of how skin-worn devices affect the natural tactile perception. In this study, we approach this research challenge by proposing a novel classification system for epidermal devices based on flexural rigidity and by testing advanced adhesive materials, including tattoo paper and thin films of poly (dimethylsiloxane) (PDMS). We report on the results of three psychophysical experiments that investigated the effect of epidermal devices of different rigidity on passive and active tactile perception. We analyzed human tactile sensitivity thresholds, two-point discrimination thresholds, and roughness discrimination abilities on three different body locations (fingertip, hand, forearm). Generally, a correlation was found between device rigidity and tactile sensitivity thresholds as well as roughness discrimination ability. Surprisingly, thin epidermal devices based on PDMS with a hundred times the rigidity of commonly used tattoo paper resulted in comparable levels of tactile acuity. The material offers the benefit of increased robustness against wear and the option to re-use the device. Based on our findings, we derive design recommendations for epidermal devices that combine tactile perception with device robustness.
  • Item
    Self-Adhesive Silicone Microstructures for the Treatment of Tympanic Membrane Perforations
    (Weinheim : Wiley-VCH, 2021) Lana, Gabriela Moreira; Sorg, Katharina; Wenzel, Gentiana Ioana; Hecker, Dietmar; Hensel, René; Schick, Bernhard; Kruttwig, Klaus; Arzt, Eduard
    Inspired by the gecko foot, polymeric microstructures have demonstrated reliable dry adhesion to both stiff objects and sensitive surfaces such as skin. Microstructured silicone patches are proposed, herein, for the treatment of tympanic membrane perforations with the aim of serving as an alternative for current surgical procedures that require anesthesia and ear canal packing. Sylgard 184 PDMS micropillars of 20 μm in diameter and 60 μm in length are topped by a Soft Skin Adhesive (SSA) MG7-1010 terminal layer, of about 25 μm thickness. The adhesion is evaluated by specially designed tack tests against explanted murine eardrums and, for comparison, against a rigid substrate. Functional effects are evaluated using auditory brainstem responses (ABRs) and distortion product otoacoustic emissions (DPOAE). The adhesion strength of the microstructure and unstructured controls to explanted murine tympanic membranes is comparable (typically 12 kPa), but the microstructured patches are easier to handle by the surgeon. For the first time, partial recovery of hearing performance is measured immediately after patch application. The novel patches adhere without the need for further fixation, removing the need for ear canal packing. The proposed material design holds great promise for improving clinical treatments of tympanic membrane perforations.
  • Item
    Adhesion and Cellular Compatibility of Silicone-Based Skin Adhesives
    (Weinheim : Wiley-VCH, 2017) Fischer, Sarah C. L.; Kruttwig, Klaus; Bandmann, Vera; Hensel, René; Arzt, Eduard
    Pressure-sensitive adhesives based on silicone materials have emerging potential as adhesives in healthcare products, in particular for gentle skin adhesives. To this end, adhesion to rough skin and biocompatibility are crucial factors for a successful implementation. In this study, the mechanical, adhesive, and biological properties of the two-component poly(dimethylsiloxane) Soft Skin Adhesive MG 7-9800 (SSA, Dow Corning) have been investigated and compared to Sylgard 184. Different mixing ratios of SSA's components allow for tuning of the shear modulus, thereby modifying the adhesive properties of the polymer. To give a comprehensive insight, the authors have analyzed the interplay between pull-off stress, adhesion energy, and stretch of the adhesive films on smooth and rough surfaces. The focus is placed on the effects of substrate roughness and on low pressure oxygen plasma treatment of the adhesive films. SSA shows superior biocompatibility in in vitro cell culture experiments. High pull-off stresses in the range of 3 N cm−2 on a rough surface are achieved, promising broad application spectra for SSA-based healthcare products.
  • Item
    Adhesion and relaxation of a soft elastomer on surfaces with skin like roughness
    (Amsterdam : Elsevier, 2018) Fischer, Sarah; Boyadzhieva, Silviya; Hensel, René; Kruttwig, Klaus; Arzt, Eduard
    For designing new skin adhesives, the complex mechanical interaction of soft elastomers with surfaces of various roughnesses needs to be better understood. We systematically studied the effects of a wide set of roughnesscharacteristics, film thickness, hold time and material relaxation on the adhesive behaviour of the silicone elastomer SSA 7–9800 (Dow Corning). As model surfaces, we used epoxy replicas obtained from substrates with roughness ranging from very smooth to skin-like. Our results demonstrate that films of thin and intermediate thickness (60 and 160 μm) adhered best to a sub-micron rough surface, with a pull-off stress of about 50 kPa. Significant variations in pull-off stress and detachment mechanism with roughness and hold time were found. In contrast, 320 μm thick films adhered with lower pull-off stress of about 17 kPa, but were less sensitive to roughness and hold time. It is demonstrated that the adhesion performance of the siliconefilms to rough surfaces can be tuned by tailoring the film thickness and contact time.
  • Item
    A self-adhesive elastomericwound scaffold for sensitive adhesion to tissue
    (Basel : MDPI, 2019) Boyadzhieva, Silviya; Sorg, Katharina; Danner, Martin; Hensel, René; Fischer, Sarah C.L.; Schick, Bernhard; Wenzel, Gentiana; Arzt, Eduard; Kruttwig, Klaus
    Pressure sensitive adhesives based on silicone materials are used particularly for skin adhesion, e.g., the fixation of electrocardiogram (ECG) electrodes or wound dressings. However, adhesion to sensitive tissue structures is not sufficiently addressed due to the risk of damage or rupture. We propose an approach in which a poly-(dimethylsiloxane) (PDMS)-based soft skin adhesive (SSA) acts as cellular scaffold for wound healing. Due to the intrinsically low surface free energy of silicone elastomers, functionalization strategies are needed to promote the attachment and spreading of eukaryotic cells. In the present work, the effect of physical adsorption of three different proteins on the adhesive properties of the soft skin adhesive was investigated. Fibronectin adsorption slightly affects adhesion but significantly improves the cellular interaction of L929 murine fibroblasts with the polymeric surface. Composite films were successfully attached to explanted tympanic membranes. This demonstrates the potential of protein functionalized SSA to act as an adhesive scaffold in delicate biomedical applications.