Search Results

Now showing 1 - 2 of 2
  • Item
    SO2 oxidation products other than H2SO4 as a trigger of new particle formation. Part 2: Comparison of ambient and laboratory measurements, and atmospheric implications
    (München : European Geopyhsical Union, 2008) Laaksonen, A.; Kulmala, M.; Bernd, T.; Stratmann, F.; Mikkonen, S.; Ruuskanen, A.; Lehtinen, K.E.J.; Dal Maso, M.; Aalto, P.; Petäjä, T.; Riipinen, I.; Sihto, S.-L.; Janson, R.; Arnold, F.; Hanke, M.; Ücker, J.; Umann, B.; Sellegri, K.; O'Dowd, C.D.; Viisanen, Y.
    Atmospheric new particle formation is generally thought to occur due to homogeneous or ion-induced nucleation of sulphuric acid. We compare ambient nucleation rates with laboratory data from nucleation experiments involving either sulphuric acid or oxidized SO2. Atmospheric nucleation occurs at H2SO4 concentrations 2–4 orders of magnitude lower than binary or ternary nucleation rates of H2SO4 produced from a liquid reservoir, and atmospheric H2SO4 concentrations are very well replicated in the SO2 oxidation experiments. We hypothesize these features to be due to the formation of free HSO5 radicals in pace with H2SO4 during the SO2 oxidation. We suggest that at temperatures above ~250 K these radicals produce nuclei of new aerosols much more efficiently than H2SO4. These nuclei are activated to further growth by H2SO4 and possibly other trace species. However, at lower temperatures the atmospheric relative acidity is high enough for the H2SO4–H2O nucleation to dominate.
  • Item
    SO2 oxidation products other than H2SO4 as a trigger of new particle formation. Part 1: Laboratory investigations
    (München : European Geopyhsical Union, 2008) Berndt, T.; Stratmann, F.; Bräsel, S.; Heintzenberg, J.; Laaksonen, A.; Kulmala, M.
    Mechanistic investigations of atmospheric H2SO4 particle formation have been performed in a laboratory study taking either H2SO4 from a liquid reservoir or using the gas-phase reaction of OH radicals with SO2. Applying both approaches for H2SO4 generation simultaneously it was found that H2SO4 evaporated from the liquid reservoir acts considerably less effective for the process of particle formation and growth than the products originating from the reaction of OH radicals with SO2. Furthermore, for NOx concentrations >5×1011 molecule cm−3 the formation of new particles from the reaction of OH radicals with SO2 is inhibited. This suggests that substances other than H2SO4 (potentially products from sulphur-containing peroxy radicals) trigger lower tropospheric new particle formation and growth. The currently accepted mechanism for SO2 gas-phase oxidation does not consider the formation of such substances. The analysis of new particle formation for different reaction conditions in our experiment suggests that a contribution of impurities to the nucleation process is unlikely.