Search Results

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Item

New particle formation and its effect on cloud condensation nuclei abundance in the summer Arctic: A case study in the Fram Strait and Barents Sea

2019, Kecorius, Simonas, Vogl, Teresa, Paasonen, Pauli, Lampilahti, Janne, Rothenberg, Daniel, Wex, Heike, Zeppenfeld, Sebastian, van Pinxteren, Manuela, Hartmann, Markus, Henning, Silvia, Gong, Xianda, Welti, Andre, Kulmala, Markku, Stratmann, Frank, Herrmann, Hartmut, Wiedensohler, Alfred

In a warming Arctic the increased occurrence of new particle formation (NPF) is believed to originate from the declining ice coverage during summertime. Understanding the physico-chemical properties of newly formed particles, as well as mechanisms that control both particle formation and growth in this pristine environment, is important for interpreting aerosol-cloud interactions, to which the Arctic climate can be highly sensitive. In this investigation, we present the analysis of NPF and growth in the high summer Arctic. The measurements were made on-board research vessel Polarstern during the PS106 Arctic expedition. Four distinctive NPF and subsequent particle growth events were observed, during which particle (diameter in a range 10-50 nm) number concentrations increased from background values of approx. 40 up to 4000 cm-3. Based on particle formation and growth rates, as well as hygroscopicity of nucleation and the Aitken mode particles, we distinguished two different types of NPF events. First, some NPF events were favored by negative ions, resulting in more-hygroscopic nucleation mode particles and suggesting sulfuric acid as a precursor gas. Second, other NPF events resulted in less-hygroscopic particles, indicating the influence of organic vapors on particle formation and growth. To test the climatic relevance of NPF and its influence on the cloud condensation nuclei (CCN) budget in the Arctic, we applied a zero-dimensional, adiabatic cloud parcel model. At an updraft velocity of 0.1 m s-1, the particle number size distribution (PNSD) generated during nucleation processes resulted in an increase in the CCN number concentration by a factor of 2 to 5 compared to the background CCN concentrations. This result was confirmed by the directly measured CCN number concentrations. Although particles did not grow beyond 50 nm in diameter and the activated fraction of 15-50 nm particles was on average below 10 %, it could be shown that the sheer number of particles produced by the nucleation process is enough to significantly influence the background CCN number concentration. This implies that NPF can be an important source of CCN in the Arctic. However, more studies should be conducted in the future to understand mechanisms of NPF, sources of precursor gases and condensable vapors, as well as the role of the aged nucleation mode particles in Arctic cloud formation. © Author(s) 2019. This work is distributed under the Creative Commons Attribution 4.0 License.

Loading...
Thumbnail Image
Item

Evaporation of sulfate aerosols at low relative humidity

2017, Tsagkogeorgas, Georgios, Roldin, Pontus, Duplissy, Jonathan, Rondo, Linda, Tröstl, Jasmin, Slowik, Jay G., Ehrhart, Sebastian, Franchin, Alessandro, Kürten, Andreas, Amorim, Antonio, Bianchi, Federico, Kirkby, Jasper, Petäjä, Tuukka, Baltensperger, Urs, Boy, Michael, Curtius, Joachim, Flagan, Richard C., Kulmala, Markku, Donahue, Neil M., Stratmann, Frank

Evaporation of sulfuric acid from particles can be important in the atmospheres of Earth and Venus. However, the equilibrium constant for the dissociation of H2SO4 to bisulfate ions, which is the one of the fundamental parameters controlling the evaporation of sulfur particles, is not well constrained. In this study we explore the volatility of sulfate particles at very low relative humidity. We measured the evaporation of sulfur particles versus temperature and relative humidity in the CLOUD chamber at CERN. We modelled the observed sulfur particle shrinkage with the ADCHAM model. Based on our model results, we conclude that the sulfur particle shrinkage is mainly governed by H2SO4 and potentially to some extent by SO3 evaporation. We found that the equilibrium constants for the dissociation of H2SO4 to HSO4-(KH2SO4) and the dehydration of H2SO4 to SO3 (KSO3) are KH2SO4 Combining double low line 2-4 × 109 kg-1 and KSO3 ≥ 1.4 × g 1010 at 288.8± 5K.