Search Results

Now showing 1 - 2 of 2
  • Item
    Projecting Exposure to Extreme Climate Impact Events Across Six Event Categories and Three Spatial Scales
    (Hoboken, NJ : Wiley-Blackwell, 2020) Lange, Stefan; Volkholz, Jan; Geiger, Tobias; Zhao, Fang; Vega, Iliusi; Veldkamp, Ted; Reyer, Christopher P.O.; Warszawski, Lila; Huber, Veronika; Jägermeyr, Jonas; Schewe, Jacob; Bresch, David N.; Büchner, Matthias; Chang, Jinfeng; Ciais, Philippe; Dury, Marie; Emanuel, Kerry; Folberth, Christian; Gerten, Dieter; Gosling, Simon N.; Grillakis, Manolis; Hanasaki, Naota; Henrot, Alexandra-Jane; Hickler, Thomas; Honda, Yasushi; Ito, Akihiko; Khabarov, Nikolay; Koutroulis, Aristeidis; Liu, Wenfeng; Müller, Christoph; Nishina, Kazuya; Ostberg, Sebastian; Müller Schmied, Hannes; Seneviratne, Sonia I.; Stacke, Tobias; Steinkamp, Jörg; Thiery, Wim; Wada, Yoshihide; Willner, Sven; Yang, Hong; Yoshikawa, Minoru; Yue, Chao; Frieler, Katja
    The extent and impact of climate-related extreme events depend on the underlying meteorological, hydrological, or climatological drivers as well as on human factors such as land use or population density. Here we quantify the pure effect of historical and future climate change on the exposure of land and population to extreme climate impact events using an unprecedentedly large ensemble of harmonized climate impact simulations from the Inter-Sectoral Impact Model Intercomparison Project phase 2b. Our results indicate that global warming has already more than doubled both the global land area and the global population annually exposed to all six categories of extreme events considered: river floods, tropical cyclones, crop failure, wildfires, droughts, and heatwaves. Global warming of 2°C relative to preindustrial conditions is projected to lead to a more than fivefold increase in cross-category aggregate exposure globally. Changes in exposure are unevenly distributed, with tropical and subtropical regions facing larger increases than higher latitudes. The largest increases in overall exposure are projected for the population of South Asia. ©2020. The Authors.
  • Item
    WFDE5: Bias-adjusted ERA5 reanalysis data for impact studies
    (Katlenburg-Lindau : Copernics Publications, 2020) Cucchi, Marco; Weedon, Graham P.; Amici, Alessandro; Bellouin, Nicolas; Lange, Stefan; Müller Schmied, Hannes; Hersbach, Hans; Buontempo, Carlo
    The WFDE5 dataset has been generated using the WATCH Forcing Data (WFD) methodology applied to surface meteorological variables from the ERA5 reanalysis. The WFDEI dataset had previously been generated by applying the WFD methodology to ERA-Interim. The WFDE5 is provided at 0.5 spatial resolution but has higher temporal resolution (hourly) compared to WFDEI (3-hourly). It also has higher spatial variability since it was generated by aggregation of the higher-resolution ERA5 rather than by interpolation of the lower-resolution ERA-Interim data. Evaluation against meteorological observations at 13 globally distributed FLUXNET2015 sites shows that, on average, WFDE5 has lower mean absolute error and higher correlation than WFDEI for all variables. Bias-adjusted monthly precipitation totals of WFDE5 result in more plausible global hydrological water balance components when analysed in an uncalibrated hydrological model (WaterGAP) than with the use of raw ERA5 data for model forcing. The dataset, which can be downloaded from https://doi.org/10.24381/cds.20d54e34 (C3S, 2020b), is distributed by the Copernicus Climate Change Service (C3S) through its Climate Data Store (CDS, C3S, 2020a) and currently spans from the start of January 1979 to the end of 2018. The dataset has been produced using a number of CDS Toolbox applications, whose source code is available with the data - allowing users to regenerate part of the dataset or apply the same approach to other data. Future updates are expected spanning from 1950 to the most recent year. A sample of the complete dataset, which covers the whole of the year 2016, is accessible without registration to the CDS at https://doi.org/10.21957/935p-cj60 (Cucchi et al., 2020). © Author(s) 2020. This work is distributed under the Creative Commons Attribution 4.0 License.