Search Results

Now showing 1 - 4 of 4
  • Item
    The simulations of sulfuric acid concentration and new particle formation in an urban atmosphere in China
    (München : European Geopyhsical Union, 2013) Wang, Z.B.; Hu, M.; Mogensen, D.; Yue, D.L.; Zheng, J.; Zhang, R.Y.; Liu, Y.; Yuan, B.; Li, X.; Shao, M.; Zhou, L.; Wu, Z.J.; Wiedensohler, A.; Boy, M.
    Simulations of sulfuric acid concentration and new particle formation are performed by using the zero-dimensional version of the model MALTE (Model to predict new Aerosol formation in the Lower TropospherE) and measurements from the Campaign of Air Quality Research in Beijing and Surrounding areas (CAREBeijing) in 2008. Chemical reactions from the Master Chemical Mechanism version 3.2 (MCM v3.2) are used in the model. High correlation (slope = 0.72, R = 0.74) between the modelled and observed sulfuric acid concentrations is found during daytime (06:00–18:00). The aerosol dynamics are simulated by the University of Helsinki Multicomponent Aerosol (UHMA) model including several nucleation mechanisms. The results indicate that the model is able to predict the on- and offset of new particle formation in an urban atmosphere in China. In addition, the number concentrations of newly formed particles in kinetic-type nucleation including homogenous homomolecular (J=K[H2SO4]2) and homogenous heteromolecular nucleation involving organic vapours (J=Khet[H2SO4][Org]) are in satisfactory agreement with the observations. However, the specific organic compounds that possibly participate in the nucleation process should be investigated in further studies. For the particle growth, only a small fraction of the oxidized total organics condense onto the particles in polluted environments. Meanwhile, the OH and O3 oxidation mechanism contribute 5.5% and 94.5% to the volume concentration of small particles, indicating the particle growth is more controlled by the precursor gases and their oxidation by O3.
  • Item
    Reconstruction of global gridded monthly sectoral water withdrawals for 1971-2010 and analysis of their spatiotemporal patterns
    (Göttingen : Copernicus GmbH, 2018) Huang, Z.; Hejazi, M.; Li, X.; Tang, Q.; Vernon, C.; Leng, G.; Liu, Y.; Döll, P.; Eisner, S.; Gerten, D.; Hanasaki, N.; Wada, Y.
    Human water withdrawal has increasingly altered the global water cycle in past decades, yet our understanding of its driving forces and patterns is limited. Reported historical estimates of sectoral water withdrawals are often sparse and incomplete, mainly restricted to water withdrawal estimates available at annual and country scales, due to a lack of observations at seasonal and local scales. In this study, through collecting and consolidating various sources of reported data and developing spatial and temporal statistical downscaling algorithms, we reconstruct a global monthly gridded (0.5°) sectoral water withdrawal dataset for the period 1971-2010, which distinguishes six water use sectors, i.e., irrigation, domestic, electricity generation (cooling of thermal power plants), livestock, mining, and manufacturing. Based on the reconstructed dataset, the spatial and temporal patterns of historical water withdrawal are analyzed. Results show that total global water withdrawal has increased significantly during 1971-2010, mainly driven by the increase in irrigation water withdrawal. Regions with high water withdrawal are those densely populated or with large irrigated cropland production, e.g., the United States (US), eastern China, India, and Europe. Seasonally, irrigation water withdrawal in summer for the major crops contributes a large percentage of total annual irrigation water withdrawal in mid- and high-latitude regions, and the dominant season of irrigation water withdrawal is also different across regions. Domestic water withdrawal is mostly characterized by a summer peak, while water withdrawal for electricity generation has a winter peak in high-latitude regions and a summer peak in low-latitude regions. Despite the overall increasing trend, irrigation in the western US and domestic water withdrawal in western Europe exhibit a decreasing trend. Our results highlight the distinct spatial pattern of human water use by sectors at the seasonal and annual timescales. The reconstructed gridded water withdrawal dataset is open access, and can be used for examining issues related to water withdrawals at fine spatial, temporal, and sectoral scales.
  • Item
    Substrate Developments for the Chemical Vapor Deposition Synthesis of Graphene
    (Weinheim : Wiley-VCH Verlag, 2020) Shi, Q.; Tokarska, K.; Ta, H.Q.; Yang, X.; Liu, Y.; Ullah, S.; Liu, L.; Trzebicka, B.; Bachmatiuk, A.; Sun, J.; Fu, L.; Liu, Z.; Rümmeli, M.H.
    Since the isolation of graphene and numerous demonstrations of its unique properties, the expectations for this material to be implemented in many future commercial applications have been enormous. However, to date, challenges still remain. One of the key challenges is the fabrication of graphene in a manner that satisfies processing requirements. While transfer of graphene can be used, this tends to damage or contaminate it, which degrades its performance. Hence, there is an important drive to grow graphene directly over a number of technologically important materials, viz., different substrate materials, so as to avoid the need for transfer. One of the more successful approaches to synthesis graphene is chemical vapor deposition (CVD), which is well established. Historically, transition metal substrates are used due to their catalytic properties. However, in recent years this has developed to include many nonmetal substrate systems. Moreover, both solid and molten substrate forms have also been demonstrated. In addition, the current trend to progress flexible devices has spurred interest in graphene growth directly over flexible materials surfaces. All these aspects are presented in this review which presents the developments in available substrates for graphene fabrication by CVD, with a focus primarily on large area graphene.
  • Item
    Observation of T2-like coherent optical phonons in epitaxial Ge2Sb2Te5/GaSb(001) films
    (London : Nature Publishing Group, 2013) Shalini, A.; Liu, Y.; Al-Jarah, U.A.S.; Srivastava, G.P.; Wright, C.D.; Katmis, F.; Braun, W.; Hicken, R.J.
    The phonon spectrum of Ge2Sb2Te5 is a signature of its crystallographic structure and underlies the phase transition process used in memory applications. Epitaxial materials allow coherent optical phonons to be studied in femtosecond anisotropic reflectance measurements. A dominant phonon mode with frequency of 3.4 THz has been observed in epitaxial Ge2Sb2Te5 grown on GaSb(001). The dependence of signal strength upon pump and probe polarization is described by a theory of transient stimulated Raman scattering that accounts for the symmetry of the crystallographic structure through use of the Raman tensor. The 3.4 THz mode has the character of the 3 dimensional T2 mode expected for the Oh point group, confirming that the underlying crystallographic structure is cubic. New modes are observed in both Ge2Sb2Te5 and GaSb after application of large pump fluences, and are interpreted as 1 and 2 dimensional modes associated with segregation of Sb.