Search Results

Now showing 1 - 2 of 2
  • Item
    Global relevance of marine organic aerosol as ice nucleating particles
    (Katlenburg-Lindau : EGU, 2018) Huang, Wan Ting Katty; Ickes, Luisa; Tegen, Ina; Rinaldi, Matteo; Ceburnis, Darius; Lohmann, Ulrike
    Ice nucleating particles (INPs) increase the temperature at which supercooled droplets start to freeze. They are therefore of particular interest in mixed-phase cloud temperature regimes, where supercooled liquid droplets can persist for extended periods of time in the absence of INPs. When INPs are introduced to such an environment, the cloud can quickly glaciate following ice multiplication processes and the Wegener–Bergeron–Findeisen (WBF) process. The WBF process can also cause the ice to grow to precipitation size and precipitate out. All of these processes alter the radiative properties. Despite their potential influence on climate, the ice nucleation ability and importance of different aerosol species is still not well understood and is a field of active research. In this study, we use the aerosol–climate model ECHAM6-HAM2 to examine the global relevance of marine organic aerosol (MOA), which has drawn much interest in recent years as a potentially important INPs in remote marine regions. We address the uncertainties in emissions and ice nucleation activity of MOA with a range of reasonable set-ups and find a wide range of resulting MOA burdens. The relative importance of MOA as an INP compared to dust is investigated and found to depend strongly on the type of ice nucleation parameterisation scheme chosen. On the zonal mean, freezing due to MOA leads to relative increases in the cloud ice occurrence and in-cloud number concentration close to the surface in the polar regions during summer. Slight but consistent decreases in the in-cloud ice crystal effective radius can also be observed over the same regions during all seasons. Regardless, MOA was not found to affect the radiative balance significantly on the global scale, due to its relatively weak ice activity and a low sensitivity of cloud ice properties to heterogeneous ice nucleation in our model.
  • Item
    Immersionmode ice nucleationmeasurements with the new Portable Immersion Mode Cooling chAmber (PIMCA)
    (Hoboken, NJ : Wiley, 2016) Kohn, Monika; Lohmann, Ulrike; Welti, André; Kanji, Zamin A.
    The new Portable Immersion Mode Cooling chAmber (PIMCA) has been developed for online immersion freezing of single-immersed aerosol particles. PIMCA is a vertical extension of the established Portable Ice Nucleation Chamber (PINC). PIMCA immerses aerosol particles into cloud droplets before they enter PINC. Immersion freezing experiments on cloud droplets with a radius of 5–7 μm at a prescribed supercooled temperature (T) and water saturation can be conducted, while other ice nucleation mechanisms (deposition, condensation, and contact mode) are excluded. Validation experiments on reference aerosol (kaolinite, ammonium sulfate, and ammonium nitrate) showed good agreement with theory and literature. The PIMCA-PINC setup was tested in the field during the Zurich AMBient Immersion freezing Study (ZAMBIS) in spring 2014 in Zurich, Switzerland. Significant concentrations of submicron ambient aerosol triggering immersion freezing at T > 236 K were rare. The mean frozen cloud droplet number concentration was estimated to be 7.22·105 L−1 for T < 238 K and determined from the measured frozen fraction and cloud condensation nuclei (CCN) concentrations predicted for the site at a typical supersaturation of SS = 0.3%. This value should be considered as an upper limit of cloud droplet freezing via immersion and homogeneous freezing processes. The predicted ice nucleating particle (INP) concentration based on measured total aerosol larger than 0.5 μm and the parameterization by DeMott et al. (2010) at T = 238 K is INPD10=54 ± 39 L−1. This is a lower limit as supermicron particles were not sampled with PIMCA-PINC during ZAMBIS.