Search Results

Now showing 1 - 5 of 5
  • Item
    Inhibition of cardiac CaMKII to cure heart failure: step by step towards translation?
    (Heidelberg : Springer, 2016) Cuello, Friederike; Lorenz, Kristina
    [no abstract available]
  • Item
    Targeting cardiomyocyte ADAM10 ectodomain shedding promotes survival early after myocardial infarction
    ([London] : Nature Publishing Group UK, 2022) Klapproth, Erik; Witt, Anke; Klose, Pauline; Wiedemann, Johanna; Vavilthota, Nikitha; Künzel, Stephan R.; Kämmerer, Susanne; Günscht, Mario; Sprott, David; Lesche, Mathias; Rost, Fabian; Dahl, Andreas; Rauch, Erik; Kattner, Lars; Weber, Silvio; Mirtschink, Peter; Kopaliani, Irakli; Guan, Kaomei; Lorenz, Kristina; Saftig, Paul; Wagner, Michael; El-Armouche, Ali
    After myocardial infarction the innate immune response is pivotal in clearing of tissue debris as well as scar formation, but exaggerated cytokine and chemokine secretion with subsequent leukocyte infiltration also leads to further tissue damage. Here, we address the value of targeting a previously unknown a disintegrin and metalloprotease 10 (ADAM10)/CX3CL1 axis in the regulation of neutrophil recruitment early after MI. We show that myocardial ADAM10 is distinctly upregulated in myocardial biopsies from patients with ischemia-driven cardiomyopathy. Intriguingly, upon MI in mice, pharmacological ADAM10 inhibition as well as genetic cardiomycyte-specific ADAM10 deletion improves survival with markedly enhanced heart function and reduced scar size. Mechanistically, abolished ADAM10-mediated CX3CL1 ectodomain shedding leads to diminished IL-1β-dependent inflammation, reduced neutrophil bone marrow egress as well as myocardial tissue infiltration. Thus, our data shows a conceptual insight into how acute MI induces chemotactic signaling via ectodomain shedding in cardiomyocytes.
  • Item
    β-adrenoceptor-mediated relaxation of urinary bladder muscle in β2-adrenoceptor knockout mice
    (Lausanne : Frontiers Media, 2016) Propping, Stefan; Lorenz, Kristina; Michel, Martin C.; Wirth, Manfred P.; Ravens, Ursula
    Background and Objective: In order to characterize the β-adrenoceptor (AR) subtypes involved in agonist-stimulated relaxation of murine urinary bladder we studied the effects of (-)-isoprenaline and CL 316,243 on tonic contraction and spontaneous contractions in detrusor strips of wild-type (WT) and β2-AR knockout (β2-AR KO) mice. Materials and Methods: Urinary bladders were isolated from male WT and β2-AR KO mice. β-AR subtype expression was determined with quantitative real-time PCR. Intact muscle strips pre-contracted with KCl (40 mM) were exposed to cumulatively increasing concentrations of (-)-isoprenaline or β3-AR agonist CL 316,243 in the presence and absence of the subtype-selective β-AR blockers CGP 20712A (β1-ARs), ICI 118,551 (β2-ARs), and L748,337 (β3-ARs). Results: Quantitative real-time PCR confirmed lack of β2-AR expression in bladder tissue from β2-AR KO mice. In isolated detrusor strips, pre-contraction with KCl increased basal tone and enhanced spontaneous activity significantly more in β2-AR KO than in WT. (-)-Isoprenaline relaxed tonic tension and attenuated spontaneous activity with similar potency, but the concentrations required were two orders of magnitude higher in β2-AR KO than WT. The concentration-response curves (CRCs) for relaxation were not affected by CGP 20712A (300 nM), but were shifted to the right by ICI 118,551 (50 nM) and L748,337 (10 μM). The -logEC50 values for (-)-isoprenaline in WT and β2-AR KO tissue were 7.98 and 6.00, respectively, suggesting a large receptor reserve of β2-AR. (-)-CL 316,243 relaxed detrusor and attenuated spontaneous contractions from WT and β2-AR KO mice with a potency corresponding to the drug’s affinity for β3-AR. L743,337 shifted the CRCs to the right. Conclusion: Our findings in β2-AR KO mice suggest that there is a large receptor reserve for β2-AR in WT mice so that this β-AR subtype will mediate relaxation of tone and attenuation of spontaneous activity under physiological conditions. Nevertheless, upon removal of this reserve, β3-AR can also mediate murine detrusor relaxation.
  • Item
    CNP Promotes Antiarrhythmic Effects via Phosphodiesterase 2
    (New York, NY : Assoc., 2023) Cachorro, Eleder; Günscht, Mario; Schubert, Mario; Sadek, Mirna S.; Siegert, Johanna; Dutt, Fabian; Bauermeister, Carla; Quickert, Susann; Berning, Henrik; Nowakowski, Felix; Lämmle, Simon; Firneburg, Rebecca; Luo, Xiaojing; Künzel, Stephan R.; Klapproth, Erik; Mirtschink, Peter; Mayr, Manuel; Dewenter, Matthias; Vettel, Christiane; Heijman, Jordi; Lorenz, Kristina; Guan, Kaomei; El-Armouche, Ali; Wagner, Michael; Kämmerer, Susanne
    Background: Ventricular arrhythmia and sudden cardiac death are the most common lethal complications after myocardial infarction. Antiarrhythmic pharmacotherapy remains a clinical challenge and novel concepts are highly desired. Here, we focus on the cardioprotective CNP (C-type natriuretic peptide) as a novel antiarrhythmic principle. We hypothesize that antiarrhythmic effects of CNP are mediated by PDE2 (phosphodiesterase 2), which has the unique property to be stimulated by cGMP to primarily hydrolyze cAMP. Thus, CNP might promote beneficial effects of PDE2-mediated negative crosstalk between cAMP and cGMP signaling pathways. Methods: To determine antiarrhythmic effects of cGMP-mediated PDE2 stimulation by CNP, we analyzed arrhythmic events and intracellular trigger mechanisms in mice in vivo, at organ level and in isolated cardiomyocytes as well as in human-induced pluripotent stem cell-derived cardiomyocytes. Results: In ex vivo perfused mouse hearts, CNP abrogated arrhythmia after ischemia/reperfusion injury. Upon high-dose catecholamine injections in mice, PDE2 inhibition prevented the antiarrhythmic effect of CNP. In mouse ventricular cardiomyocytes, CNP blunted the catecholamine-mediated increase in arrhythmogenic events as well as in ICaL, INaL, and Ca2+spark frequency. Mechanistically, this was driven by reduced cellular cAMP levels and decreased phosphorylation of Ca2+handling proteins. Key experiments were confirmed in human iPSC-derived cardiomyocytes. Accordingly, the protective CNP effects were reversed by either specific pharmacological PDE2 inhibition or cardiomyocyte-specific PDE2 deletion. Conclusions: CNP shows strong PDE2-dependent antiarrhythmic effects. Consequently, the CNP-PDE2 axis represents a novel and attractive target for future antiarrhythmic strategies.
  • Item
    Eukaryotic elongation factor 2 is a prognostic marker and its kinase a potential therapeutic target in HCC
    (Orchard Park : Impact Journals, 2017) Pott, Leona L.; Hagemann, Sascha; Reis, Henning; Lorenz, Kristina; Bracht, Thilo; Herold, Thomas; Skryabin, Boris V.; Megger, Dominik A.; Kälsch, Julia; Weber, Frank; Sitek, Barbara; Baba, Hideo A.
    Hepatocellular carcinoma is a cancer with increasing incidence and largely refractory to current anticancer drugs. Since Sorafenib, a multikinase inhibitor has shown modest efficacy in advanced hepatocellular carcinoma additional treatments are highly needed. Protein phosphorylation via kinases is an important post-translational modification to regulate cell homeostasis including proliferation and apoptosis. Therefore kinases are valuable targets in cancer therapy. To this end we performed 2D differential gel electrophoresis and mass spectrometry analysis of phosphoprotein-enriched lysates of tumor and corresponding non-tumorous liver samples to detect differentially abundant phosphoproteins to screen for novel kinases as potential drug targets. We identified 34 differentially abundant proteins in phosphoprotein enriched lysates. Expression and distribution of the candidate protein eEF2 and its phosphorylated isoform was validated immunohistochemically on 78 hepatocellular carcinoma and non-tumorous tissue samples. Validation showed that total eEF2 and phosphorylated eEF2 at threonine 56 are prognostic markers for overall survival of HCC-patients. The activity of the regulating eEF2 kinase, compared between tumor and non-tumorous tissue lysates by in vitro kinase assays, is more than four times higher in tumor tissues. Functional analyzes regarding eEF2 kinase were performed in JHH5 cells with CRISPR/Cas9 mediated eEF2 kinase knock out. Proliferation and growth is decreased in eEF2 kinase knock out cells.