Search Results

Now showing 1 - 2 of 2
  • Item
    Compositional Patterning in Carbon Implanted Titania Nanotubes
    (Weinheim : Wiley-VCH, 2021) Kupferer, Astrid; Holm, Alexander; Lotnyk, Andriy; Mändl, Stephan; Mayr, Stefan G.
    Ranging from novel solar cells to smart biosensors, titania nanotube arrays constitute a highly functional material for various applications. A promising route to modify material characteristics while preserving the amorphous nanotube structure is present when applying low-energy ion implantation. In this study, the interplay of phenomenological effects observed upon implantation of low fluences in the unique 3D structure is reported: sputtering versus readsorption and plastic flow, amorphization versus crystallization and compositional patterning. Patterning within the oxygen and carbon subsystem is revealed using transmission electron microscopy. By applying a Cahn–Hilliard approach within the framework of driven alloys, characteristic length scales are derived and it is demonstrated that compositional patterning is expected on free enthalpy grounds, as predicted by density functional theory based ab initio calculations. Hence, an attractive material with increased conductivity for advanced devices is provided. © 2021 The Authors. Advanced Functional Materials published by Wiley-VCH GmbH
  • Item
    Strongly enhanced and tunable photovoltaic effect in ferroelectric-paraelectric superlattices
    (Washington, DC [u.a.] : Assoc., 2021) Yun, Yeseul; Mühlenbein, Lutz; Knoche, David S.; Lotnyk, Andriy; Bhatnagar, Akash
    Ever since the first observation of a photovoltaic effect in ferroelectric BaTiO3, studies have been devoted to analyze this effect, but only a few attempted to engineer an enhancement. In conjunction, the steep progress in thin-film fabrication has opened up a plethora of previously unexplored avenues to tune and enhance material properties via growth in the form of superlattices. In this work, we present a strategy wherein sandwiching a ferroelectric BaTiO3 in between paraelectric SrTiO3 and CaTiO3 in a superlattice form results in a strong and tunable enhancement in photocurrent. Comparison with BaTiO3 of similar thickness shows the photocurrent in the superlattice is 103 times higher, despite a nearly two-thirds reduction in the volume of BaTiO3. The enhancement can be tuned by the periodicity of the superlattice, and persists under 1.5 AM irradiation. Systematic investigations highlight the critical role of large dielectric permittivity and lowered bandgap.