Search Results

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Item

Guidance of mesenchymal stem cells on fibronectin structured hydrogel films

2014, Kasten, Annika, Naser, Tamara, Brüllhoff, Kristina, Fiedler, Jörg, Müller, Petra, Möller, Martin, Rychly, Joachim, Groll, Jürgen, Brenner, Rolf E., Engler, Adam J.

Designing of implant surfaces using a suitable ligand for cell adhesion to stimulate specific biological responses of stem cells will boost the application of regenerative implants. For example, materials that facilitate rapid and guided migration of stem cells would promote tissue regeneration. When seeded on fibronectin (FN) that was homogeneously immmobilized to NCO-sP(EO-stat-PO), which otherwise prevents protein binding and cell adhesion, human mesenchymal stem cells (MSC) revealed a faster migration, increased spreading and a more rapid organization of different cellular components for cell adhesion on fibronectin than on a glass surface. To further explore, how a structural organization of FN controls the behavior of MSC, adhesive lines of FN with varying width between 10 µm and 80 µm and spacings between 5 µm and 20 µm that did not allow cell adhesion were generated. In dependance on both line width and gaps, cells formed adjacent cell contacts, were individually organized in lines, or bridged the lines. With decreasing sizes of FN lines, speed and directionality of cell migration increased, which correlated with organization of the actin cytoskeleton, size and shape of the nuclei as well as of focal adhesions. Together, defined FN lines and gaps enabled a fine tuning of the structural organization of cellular components and migration. Microstructured adhesive substrates can mimic the extracellular matrix in vivo and stimulate cellular mechanisms which play a role in tissue regeneration.

Loading...
Thumbnail Image
Item

A New Approach to Harness Probiotics Against Common Bacterial Skin Pathogens: Towards Living Antimicrobials

2021, Khalfallah, Ghazi, Gartzen, Rita, Möller, Martin, Heine, Elisabeth, Lütticken, Rudolf

In this study, the potential of certain lactic acid bacteria—classified as probiotics and known to be antimicrobially active against pathogens or food-poisoning microorganisms—was evaluated with respect to their activity against bacterial skin pathogens. The aim of the study was to develop a plaster/bandage for the application of inhibitory substances produced by these probiotics when applied to diseased skin. For this purpose, two Streptococcus salivarius strains and one Lactobacillus plantarum were tested for production of antimicrobials (bacteriocin-like substances) active against Gram-positive and Gram-negative pathogens using established methods. A newly designed membrane test ensured that the probiotics produce antimicrobials diffusible through membranes. Target organisms used were Cutibacterium acnes, Staphylococcus aureus, and Pseudomonas aeruginosa. Moreover, the L. plantarum 8P-A3 strain was tested against additional bacteria involved in skin disorders. The Lactobacillales used were active against all potential skin pathogens tested. These probiotics could be enclosed between polymer membranes—one tight, the other permeable for their products, preserved by vacuum drying, and reactivated after at least three months storage. Importantly, the reactivated pads containing the probiotics demonstrated antibacterial activity on agar plates against all pathogens tested. This suggests that the probiotic containing pads may be topically applied for the treatment of skin disorders without the need for a regular antibiotic treatment or as an adjunctive therapy.